Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

What AI Integration Really Looks Like in Today’s Classrooms

December 18, 2025

The Evil Genius of Fascist Design: How Mussolini and Hitler Used Art & Architecture to Project Power

December 18, 2025

FETC 2026 Education Technology Conference Highlights

December 18, 2025
Facebook X (Twitter) Instagram
Thursday, December 18
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Physics»Twisted Bilayers Are Hard to Pin Down
Physics

Twisted Bilayers Are Hard to Pin Down

adminBy adminOctober 10, 20251 Comment2 Mins Read1 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Twisted Bilayers Are Hard to Pin Down
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


October 9, 2025• Physics 18, s128

Simulations have shown that the 2D sheets in twisted bilayers such as graphene can slide past one another even at small twists and under extreme compression. 

Figure captionexpand figure
J. Wang and E. Tosatti [1]
Figure caption
J. Wang and E. Tosatti [1]

×

If two egg cartons are stacked so that their respective peaks and troughs lock together, then one cannot be slid over the other. But stack them with a twist so that they no longer align, and the top carton can slide along the peaks of the bottom carton. Something similar occurs between the sheets of bilayer graphene and other 2D materials. In a regular bilayer with aligned lattices, the sheets are pinned in an energetically favorable configuration. But for certain twist angles, the two-layer superlattice lacks long-range order, no configuration is favored, and one sheet can move freely over the other. Jin Wang and Erio Tosatti at the International School for Advanced Studies (SISSA) in Italy have now found that this friction-free state is remarkably resilient [1].

The transition from sliding to pinning was first analyzed 40 years ago for a chain of particles moving through a periodic 1D potential [2]. When the particle spacing matches the periodicity of the potential, the chain is pinned and immobile. When it does not—a so-called incommensurate state―the chain slides freely. But even in this state, pinning can occur unexpectedly when the chain’s flexibility or the potential’s depth exceeds certain values. Wang and Tosatti tackled the problem in 2D materials by simulating bilayers of graphene, hexagonal boron nitride, and molybdenum disulfide. They varied the twist angle, the stiffness of the sheets, and—as an analogue for the potential depth—the mechanical load placed on the sheets. They found that the free-sliding state persisted for twist angles as small as 0.3° and for loads as large as 10 gigapascals. Thanks to the state’s robustness, twisted bilayers could be used to engineer low-friction surfaces in nanoelectromechanical devices, the researchers say.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics Magazine based in Bristol, UK.

References

  1. J. Wang and E. Tosatti, “Aubry pinning transition of twisted two-dimensional material bilayers,” Phys. Rev. B 112, 155406 (2025).
  2. M. Peyrard and S. Aubry, “Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model,” J. Phys. C: Solid State Phys. 16, 1593 (1983).

Subject Areas

GrapheneMaterials Science

Related Articles

Interface Forces Leak Through Graphene Coatings
New Material Solves Three Problems
Bilayer Graphene Slides into Action

More Articles



Source link

Bilayers hard Pin Twisted
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Physics

Introducing Laws of Physics – AIP.ORG

December 18, 2025
Physics

Nuno Loureiro, professor and director of MIT’s Plasma Science and Fusion Center, dies at 47 » MIT Physics

December 17, 2025
Physics

Is the Universe Finite, or Is It Infinite?

December 16, 2025
Physics

Make use of time, let not advantage slip

December 15, 2025
Physics

Speed-of-Light Computing Could Get Us to AGI Very Fast

December 14, 2025
Physics

Components of RNA among life’s building blocks found in NASA asteroid sample – Physics World

December 13, 2025
View 1 Comment

1 Comment

  1. Vivian2682
    Vivian2682 on October 11, 2025 1:41 am

    https://shorturl.fm/bfUuM

    Log in to Reply
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202551 Views

Improve your speech with immersive lessons!

May 28, 202546 Views

Hannah’s Spring Semester in Cannes

May 28, 202539 Views

Why Are Teachers Burned Out but Still in Love With Their Jobs?

May 30, 202537 Views
Don't Miss

Meet Four People Who Did an Internship in London, England 

By adminDecember 15, 20250

49 As the former seat of the British Empire, England has a fascinating history and…

How Do I Find A Study Abroad Program that Matches My Major?

December 11, 2025

Winter Holidays Around the World: Seasonal Celebrations Abroad

December 7, 2025

Introducing AIFS Abroad’s Spring 2026 Green Ambassadors

December 3, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

What AI Integration Really Looks Like in Today’s Classrooms

December 18, 2025

The Evil Genius of Fascist Design: How Mussolini and Hitler Used Art & Architecture to Project Power

December 18, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.