Roy, R., Hill, V. & Osborn, E. Polymorphism of Ga2O3 and the system Ga2O3-H2O. J. Am. Chem. Soc. 74, 719–722 (1952).
Weiser, P., Stavola, M., Fowler, W. B., Qin, Y. & Pearton, S. Structure and vibrational properties of the dominant O-H center in β-Ga2O3. Appl. Phys. Lett. 112, 232104 (2018).
Zheng, R. et al. p-IrOx/n-β-Ga2O3 heterojunction diodes with 1-kV breakdown and ultralow leakage current below 0.1 μA/cm2. IEEE Trans. Electron Devices 71, 1587–1591 (2024).
Tan, S. W., Chang, C. W., Jiang, Z. H. & Lin, K. W. Study of a platinum nanoparticles/indium gallium oxide based ammonia gas sensor and a gas sensing model for internet of things (IoT) application. IEEE Trans. Electron Devices 72, 813–821 (2025).
Feng, W. et al. Critical role of dopant bond strength in enhancing the conductivity of n-type doped κ-Ga2O3. Phys. Let. A 511, 129546 (2024).
Wang, J. et al. ε-Ga2O3: a promising candidate for high-electron-mobility transistors. IEEE Electron Device Lett. 1–1, (2020).
Feng, W., Chen, X., Liang, J., Wang, G. & Pei, Y. First-principles prediction of κ-Ga2O3: N ferromagnetism. J. Phys. Chem. C 128, 7733–7741 (2024).
Oshima, Y., Víllora, E. G., Matsushita, Y., Yamamoto, S. & Shimamura, K. Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy. J. Appl. Phys. 118, 085301 (2015).
Xia, X. et al. Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Appl. Phys. Lett. 108, 202103 (2016).
Che, C. et al. High performance solar-blind photodetectors based on MOCVD grown β-Ga2O3 with hydrogen plasma treatment. Semicond. Sci. Technol. 40, 055005 (2025).
Boschi, F. et al. Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD. J. Cryst. Growth 443, 25–30 (2016).
Cho, S. B. & Mishra, R. Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface. Appl. Phys. Lett. 112, 162101 (2018).
Mezzadri, F. et al. Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire. Inorg. Chem. 55, 12079–12084 (2016).
McCluskey, M. D. Point defects in Ga2O3. J. Appl. Phys. 127, 101101 (2020).
Liu, L. L. et al. Fabrication and characteristics of N-doped β-Ga2O3 nanowires. Appl. Phys. A 98, 831–835 (2010).
Farzana, E., Chaiken, M. F., Blue, T. E., Arehart, A. R. & Ringel, S. A. Impact of deep level defects induced by high energy neutron radiation in β-Ga2O3. APL Mater. 7, 022502 (2019).
Hong, Z. et al. Low turn-on voltage and reverse leakage current β-Ga2O3 MIS Schottky barrier diodes with an AlN interfacial layer. IEEE Trans. Electron Devices 71, 6934–6941 (2024).
Yoo, J.-H., Rafique, S., Lange, A., Zhao, H. & Elhadj, S. Lifetime laser damage performance of β-Ga2O3 for high power applications. APL Mater. 6, 036105 (2018).
Zacherle, T., Schmidt, P. C. & Martin, M. Ab initio calculations on the defect structure of β-Ga2O3. Phys. Rev. B 87, 235206 (2013).
Varley, J. B., Weber, J. R., Janotti, A. & Van de Walle, C. G. Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 97, 142106 (2010).
Dong, L., Jia, R., Xin, B., Peng, B. & Zhang, Y. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci. Rep. 7, 40160 (2017).
Lyons, J. L. Electronic Properties of Ga2O3 Polymorphs. ECS J. Solid State Sci. Technol. 8, Q3226–Q3228 (2019).
Mazzolini, P. et al. Engineering shallow and deep level defects in κ-Ga2O3 thin films: comparing metal-organic vapour phase epitaxy to molecular beam epitaxy and the effect of annealing treatments. Mater. Today Phys. 45, 101463 (2024).
He, X., Wang, M., Meng, J., Hu, J. & Jiang, Y. The effect of vacancy defects on the electronic properties of β-Ga2O3. Comput. Mater. Sci. 215, 111777 (2022).
Li, S. et al. Oxygen vacancies modulating the photodetector performances in ε-Ga2O3 thin films. J. Mater. Chem. C. 9, 5437–5444 (2021).
Peelaers, H. & Van De Walle, C. G. Brillouin zone and band structure of β-Ga2O3. Phys. Status Solidi b 252, 828–832 (2015).
Wang, Y. et al. Recent progress on the effects of impurities and defects on the properties of Ga2O3. J. Mater. Chem. C. 10, 13395–13436 (2022).
Pavesi, M. et al. ε-Ga2O3 epilayers as a material for solar-blind UV photodetectors. Mater. Chem. Phys. 205, 502–507 (2018).
Zhu, B., Kavanagh, S. R. & Scanlon, D. easyunfold: A Python Package for Unfolding Electronic Band Structures (Zenodo, 2024).
Janotti, A. & Van de Walle, C. G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005).
Lee, J., Lu, W. D. & Kioupakis, E. Electronic and optical properties of oxygen vacancies in amorphous Ta2O5 from first principles. Nanoscale 9, 1120–1127 (2017).
Matsunaga, K., Tanaka, T., Yamamoto, T. & Ikuhara, Y. First-principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 68, 085110 (2003).
Hao, L. Y., Du, J. L. & Fu, E. G. Theoretical study on structural and optical properties of β-Ga2O3 with O vacancies via shell DFT-1/2 method. J. Appl. Phys. 134, 085101 (2023).
Dicks, O. A., Cottom, J., Shluger, A. L. & Afanas’ev, V. V. The origin of negative charging in amorphous Al2O3 films: the role of native defects. Nanotechnology 30, 205201 (2019).
Muñoz Ramo, D., Gavartin, J. L., Shluger, A. L. & Bersuker, G. Spectroscopic properties of oxygen vacancies in monoclinic Al2O3 calculated with periodic and embedded cluster density functional theory. Phys. Rev. B 75, 205336 (2007).
Yang, Y. et al. In-depth investigation of low-energy proton irradiation effect on the structural and photoresponse properties of ε-Ga2O3 thin films. Mater. Des. 221, 110944 (2022).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
Freysoldt, C., Neugebauer, J. & Van de Walle, C. G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).
Freysoldt, C., Neugebauer, J. & Van De Walle, C. G. Electrostatic interactions between charged defects in supercells. Phys. Status Solidi b. 248, 1067–1076 (2011).
Van de Walle, C. G. & Neugebauer, J. First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004).
Cora, I. et al. The real structure of ε-Ga2O3 and its relation to κ-phase. CrystEngComm 19, 1509–1516 (2017).
Zhang, Z.-C., Wu, Y. & Ahmed, S. First-principles calculation of electronic structure and polarization in ε -Ga2O3 within GGA and GGA + U frameworks. Mater. Res. Express 6, 125904 (2019).
Kim, J., Tahara, D., Miura, Y. & Kim, B. G. First-principle calculations of electronic structures and polar properties of (κ,ε)-Ga2O3. Appl. Phys. Express 11, 061101 (2018).
