Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Pomona College considers acquiring Claremont Graduate University

January 5, 2026

Using the Teleprompter in Google Vids

January 5, 2026

Learning Python to Automate in HR

January 5, 2026
Facebook X (Twitter) Instagram
Monday, January 5
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»The membrane transition strongly enhances biopolymer condensation through prewetting
Chemistry

The membrane transition strongly enhances biopolymer condensation through prewetting

adminBy adminJanuary 3, 2026No Comments11 Mins Read1 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
The membrane transition strongly enhances biopolymer condensation through prewetting
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Mishra, Y. G. & Manavathi, B. Focal adhesion dynamics in cellular function and disease. Cell. Signal. 85, 110046 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaizuka, T. & Takumi, T. Postsynaptic density proteins and their involvement in neurodevelopmental disorders. J. Biochem. 163, 447–455 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zihni, C., Mills, C., Matter, K. & Balda, M. S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17, 564–580 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Courtney, A. H., Lo, W.-L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Case, L. B., De Pasquale, M., Henry, L. & Rosen, M. K. Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation. eLife 11, e72588 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snead, W. T. et al. Membrane surfaces regulate assembly of ribonucleoprotein condensates. Nat. Cell Biol. 24, 461–470 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, C.-W. et al. A two-component protein condensate of the EGFR cytoplasmic tail and Grb2 regulates Ras activation by SOS at the membrane. Proc. Natl Acad. Sci. USA 119, e2122531119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H.-Y. et al. Coupling of protein condensates to ordered lipid domains determines functional membrane organization. Sci. Adv. 9, eadf6205 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Case, L. B., Zhang, X., Ditlev, J. A. & Rosen, M. K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 363, 1093–1097 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAffee, D. B. et al. Discrete LAT condensates encode antigen information from single pMHC:TCR binding events. Nat. Commun. 13, 7446 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milovanovic, D., Wu, Y., Bian, X. & De Camilli, P. A liquid phase of synapsin and lipid vesicles. Science 361, 604–607 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangiarotti, A., Chen, N., Zhao, Z., Lipowsky, R. & Dimova, R. Wetting and complex remodeling of membranes by biomolecular condensates. Nat. Commun. 14, 2809 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangiarotti, A. et al. Biomolecular condensates modulate membrane lipid packing and hydration. Nat. Commun. 14, 6081 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeno, W. F., Johnson, K. E., Sasaki, D. Y., Risbud, S. H. & Longo, M. L. Dynamics of crowding-induced mixing in phase separated lipid bilayers. J. Phys. Chem. B 120, 11180–11190 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, F. et al. Membrane bending by protein phase separation. Proc. Natl Acad. Sci. USA 118, e2017435118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondal, S. et al. Multivalent interactions between molecular components involved in fast endophilin mediated endocytosis drive protein phase separation. Nat. Commun. 13, 5017 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y. et al. Transmembrane coupling of liquid-like protein condensates. Nat. Commun. 14, 8015 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, J. K. et al. Coupled membrane lipid miscibility and phosphotyrosine-driven protein condensation phase transitions. Biophys. J. 120, 1257–1265 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rouches, M., Veatch, S. L. & Machta, B. B. Surface densities prewet a near-critical membrane. Proc. Natl Acad. Sci. USA 118, e2103401118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakanishi, H. & Fisher, M. E. Multicriticality of wetting, prewetting, and surface transitions. Phys. Rev. Lett. 49, 1565–1568 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Cahn, J. W. Critical point wetting. J. Chem. Phys. 66, 3667–3672 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, J. W. & Moldover, M. R. A search for the prewetting line. J. Chem. Phys. 84, 4563–4568 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X., Bartolucci, G., Honigmann, A., Jülicher, F. & Weber, C. A. Thermodynamics of wetting, prewetting and surface phase transitions with surface binding. New J. Phys. 23, 123003 (2021).

    Article 

    Google Scholar
     

  • Veatch, S. L., Rogers, N., Decker, A. & Shelby, S. A. The plasma membrane as an adaptable fluid mosaic. Biochim. Biophys. Acta 1865, 184114 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Priftis, D. & Tirrell, M. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter 8, 9396–9405 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weakly, H. M. J. & Keller, S. L. Coupling liquid phases in 3D condensates and 2D membranes: successes, challenges, and tools. Biophys. J. 123, 1329–1341 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronceray, P., Zhang, Y., Liu, X. & Wingreen, N. S. Stoichiometry controls the dynamics of liquid condensates of associative proteins. Phys. Rev. Lett. 128, 038102 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veatch, S. L. & Keller, S. L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Symons, J. L. et al. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter 17, 288–297 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. et al. Reversible protein inactivation by optogenetic trapping in cells. Nat. Methods 11, 633–636 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Che, D. L., Duan, L., Zhang, K. & Cui, B. The dual characteristics of light-induced cryptochrome 2, homo-oligomerization and heterodimerization, for optogenetic manipulation in mammalian cells. ACS Synth. Biol. 4, 1124–1135 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shelby, S. A., Castello-Serrano, I., Wisser, K. C., Levental, I. & Veatch, S. L. Membrane phase separation drives responsive assembly of receptor signaling domains. Nat. Chem. Biol. 19, 750–758 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machta, B. B. et al. Conditions that stabilize membrane domains also antagonize n-alcohol anesthesia. Biophys. J. 111, 537–545 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machta, B. B., Papanikolaou, S., Sethna, J. P. & Veatch, S. L. Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. Biophys. J. 100, 1668–1677 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surviladze, Z., Dráberová, L., Kovářová, M., Boubelík, M. & Dráber, P. Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur. J. Immunol. 31, 1–10 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wåhlén, E., Olsson, F., Söderberg, O., Lennartsson, J. & Heldin, J. Differential impact of lipid raft depletion on platelet-derived growth factor (PDGF)-induced ERK1/2 MAP-kinase, SRC and AKT signaling. Cell. Signal. 96, 110356 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ottico, E. et al. Dynamics of membrane lipid domains in neuronal cells differentiated in culture1. J. Lipid Res. 44, 2142–2151 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doktorova, M. et al. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. Cell 188, 2586–2602 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, J., Umeda, M., Sims, P. J. & Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834–838 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stefan, C. J. Endoplasmic reticulum–plasma membrane contacts: principals of phosphoinositide and calcium signaling. Curr. Opin. Cell Biol. 63, 125–134 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandhu, J. et al. Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells. Cell 175, 514–529 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiegand, T. et al. Actin polymerization counteracts prewetting of N-WASP on supported lipid bilayers. Proc. Natl Acad. Sci. USA 121, e2407497121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S. et al. Demixing is a default process for biological condensates formed via phase separation. Science 384, 920–928 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, C.-C. et al. Receptor tyrosine kinases regulate signal transduction through a liquid–liquid phase separated state. Mol. Cell. 82, 1089–1106 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pombo-García, K., Adame-Arana, O., Martin-Lemaitre, C., Jülicher, F. & Honigmann, A. Membrane prewetting by condensates promotes tight-junction belt formation. Nature 632, 647–655 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Case, L. B., Ditlev, J. A. & Rosen, M. K. Regulation of transmembrane signaling by phase separation. Annu. Rev. Biophys. 48, 465–494 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banjade, S., Zhu, L., Jorgensen, J. R., Suzuki, S. W. & Emr, S. D. Recruitment and organization of ESCRT-0 and ubiquitinated cargo via condensation. Sci. Adv. 8, eabm5149 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S., Okafor, K. K., Tabuchi, R., Briones, C. & Lee, I.-H. Phase separation clustering of poly ubiquitin cargos on ternary mixture lipid membranes by synthetically cross-linked ubiquitin binder peptides. Biochemistry 64, 1212–1221 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, P. et al. PI4P-mediated solid-like Merlin condensates orchestrate Hippo pathway regulation. Science 385, eadf4478 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, C.-P., Hordeichyk, A., Aretz, J., Fässler, R. & Bausch, A. R. Synergistic effect of PIP2 and PIP3 on membrane-induced phase separation of integrin complexes. Biophys. J. 0, S0006–3495(25)00238–3 (2025).

  • Wong, L. E. et al. Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness. Nat. Commun. 11, 848 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tillu, V. A. et al. Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nat. Commun. 12, 931 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shnyrova, A. V. et al. Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain. J. Cell Biol. 179, 627–633 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson, L.-A., Bai, Y., Keane, S. C., Doudna, J. A. & Hurley, J. H. Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies. eLife 5, e14663 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, R. et al. Microtubules gate tau condensation to spatially regulate microtubule functions. Nat. Cell Biol. 21, 1078–1085 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouches, M. N. & Machta, B. B. Protein–DNA co-condensation is prewetting to a collapsed polymer. Biophys. J. 124, 2280–2290 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pyenta, P. S., Holowka, D. & Baird, B. Cross-correlation analysis of inner-leaflet-anchored green fluorescent protein co-redistributed with IgE receptors and outer leaflet lipid raft components. Biophys. J. 80, 2120–2132 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, W. & Mayr, C. A membraneless organelle associated with the endoplasmic reticulum enables 3′UTR-mediated protein–protein interactions. Cell 175, 1492–1506 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bisaria, A., Hayer, A., Garbett, D., Cohen, D. & Meyer, T. Membrane-proximal F-actin restricts local membrane protrusions and directs cell migration. Science 368, 1205–1210 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Römer, A., Rawat, D., Linn, T. & Petry, S. F. Preparation of fatty acid solutions exerts significant impact on experimental outcomes in cell culture models of lipotoxicity. Biol. Methods Protoc. 7, bpab023 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Gerstle, Z., Desai, R. & Veatch, S. L. in Chemical and Biochemical Approaches for the Study of Anesthetic Function Part B 129–150 (Elsevier, 2018).



  • Source link

    Biochemical Engineering Biochemistry Bioorganic Chemistry Biophysical chemistry Biophysics biopolymer cell biology Chemistry/Food Science condensation Enhances General Membrane prewetting strongly Transition
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
    thanhphuchoang09
    admin
    • Website

    Related Posts

    Chemistry

    Beyond silicon: These shape-shifting molecules could be the future of AI hardware

    January 4, 2026
    Chemistry

    Molecules of the year 2025: Cyclo[48]carbon and others – the onset of bond alternation and the Raman Activity Spectrum.

    January 1, 2026
    Chemistry

    Amorphous/crystalline heterogeneous interface synergizing with in-situ generated dual Cl –repelling layers to realize ultrastable seawater oxidation

    December 31, 2025
    Chemistry

    What are asteroids really made of? New analysis brings space mining closer to reality

    December 29, 2025
    Special Education

    Aligning General and Special Education for Student Success (Opinion)

    December 28, 2025
    Chemistry

    Structure and properties of ozone-induced Schiff-base crosslinked starch-chitosan complex under ozone duration

    December 28, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Top Posts

    Announcing the All-New EdTechTeacher Summer Learning Pass!

    May 31, 202555 Views

    Improve your speech with immersive lessons!

    May 28, 202550 Views

    Hannah’s Spring Semester in Cannes

    May 28, 202544 Views

    Why Are Teachers Burned Out but Still in Love With Their Jobs?

    May 30, 202542 Views
    Don't Miss

    Top USA Education Consultants in Hyderabad

    By adminJanuary 4, 20260

    Hyderabad students often aim for universities that combine academic excellence with excellent career prospects. Some…

    Claire’s Semester Abroad in Dublin, Ireland

    January 3, 2026

    Learn How to Say “Happy Holidays” in Different Languages 

    December 30, 2025

    Sabi’s Spring Semester in South Korea

    December 27, 2025
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us
    About Us

    Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

    Our Picks

    Pomona College considers acquiring Claremont Graduate University

    January 5, 2026

    Using the Teleprompter in Google Vids

    January 5, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    Copyright© 2025 Bkngpnarnaul All Rights Reserved.
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.