Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Veterans Day for Kids: 19 Activities That Teach Honor

July 19, 2025

A summer of escalating existential threats

July 19, 2025

Four Ways to Use Wolfram Notebook Assistant This Semester—Wolfram Blog

July 19, 2025
Facebook X (Twitter) Instagram
Saturday, July 19
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Sustainable production of chemicals by algorithm-assisted (bio)synthesis
Chemistry

Sustainable production of chemicals by algorithm-assisted (bio)synthesis

adminBy adminJune 29, 20252 Comments18 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Sustainable production of chemicals by algorithm-assisted (bio)synthesis
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article 

    Google Scholar
     

  • Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article 

    Google Scholar
     

  • Wang, J. Z., Lyon, W. L. & MacMillan, D. W. C. Alkene dialkylation by triple radical sorting. Nature 628, 104–109 (2024).

    Article 

    Google Scholar
     

  • Murphy, M. A. Early industrial roots of green chemistry and the history of the BHC ibuprofen process invention and its quality connection. Found. Chem. 20, 121–165 (2018).

    Article 

    Google Scholar
     

  • Hoyos, P., Pace, V. & Alcántara, A. R. Biocatalyzed synthesis of statins: a sustainable strategy for the preparation of valuable drugs. Catalysts 9, 260 (2019).

    Article 

    Google Scholar
     

  • European Chemical Agency. Chemicals in a circular economy (2020).

  • European Commission. A new circular economy plan for a cleaner and more competitive europe (2020).

  • Neslen, A. EU abandons promise to ban toxic chemicals in consumer products. The Guardian (16 October 2023).

  • Stahel, W. R. Circular economy. Nature 531, 435–438 (2016).

    Article 

    Google Scholar
     

  • Winans, K., Kendall, A. & Deng, H. The history and current applications of the circular economy concept. Renew. Sust. Ener. Rev. 68, 825–833 (2017).

    Article 

    Google Scholar
     

  • Keijer, T., Bakker, V. & Slootweg, J. C. Circular chemistry to enable a circular economy. Nat. Chem. 11, 190–195 (2019).

    Article 

    Google Scholar
     

  • Kümmerer, K., Clark, J. H. & Zuin, V. G. Rethinking chemistry for a circular economy. Science 367, 369–370 (2020).

    Article 

    Google Scholar
     

  • Kümmerer, K. Sustainable chemistry: a future guiding principle. Angew. Chem. Int. Ed. Engl. 56, 16420–16421 (2017).

    Article 

    Google Scholar
     

  • Mutlu, H. & Barner, L. Getting the terms right: green, sustainable, or circular chemistry? Macromol. Chem. Phys. 223, 2200111 (2022).

    Article 

    Google Scholar
     

  • Poliakoff, M., Fitzpatrick, J. M., Farren, T. R. & Anastas, P. T. Green chemistry: science and politics of change. Science 297, 807–810 (2002).

    Article 

    Google Scholar
     

  • Anastas, P. T. & Warner, J. Green Chemistry: Theory and Practice (Oxford University Press, 1998).

  • Anastas, P. T. in: Benign by Design. ACS Symposium Series Ch 1 (eds Anastas, P. T. & Farris, C. A.) (American Chemical Society, 1994).

  • Hutzinger, O. The greening of chemistry — is it sustainable? Environ. Sci. Pollut. Res. 6, 123 (1999).

    Article 

    Google Scholar
     

  • Fantke, P. et al. Transition to sustainable chemistry through digitalization. Chem 7, 2866–2882 (2021).

    Article 

    Google Scholar
     

  • Szymkuć, S. et al. Computer‐assisted synthetic planning: the end of the beginning. Angew. Chem. Int. Ed. Engl. 55, 5904–5937 (2016).

    Article 

    Google Scholar
     

  • Mikulak-Klucznik, B. et al. Computational planning of the synthesis of complex natural products. Nature 588, 83–88 (2020).

    Article 

    Google Scholar
     

  • Klucznik, T. et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem 4, 522–532 (2018).

    Article 

    Google Scholar
     

  • Lin, Y., Zhang, R., Wang, D. & Cernak, T. Computer-aided key step generation in alkaloid total synthesis. Science 379, 453–457 (2023).

    Article 

    Google Scholar
     

  • Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article 

    Google Scholar
     

  • Levin, I. et al. Merging enzymatic and synthetic chemistry with computational synthesis planning. Nat. Commun. 13, 7747 (2022).

    Article 

    Google Scholar
     

  • Sankaranarayanan, K., Klavs, F. & Jensen, K. F. Computer-assisted multistep chemoenzymatic retrosynthesis using a chemical synthesis planner. Chem. Sci. 14, 6467–6475 (2023).

    Article 

    Google Scholar
     

  • Gao, W., Mercado, R. & Coley, C. W. Amortized tree generation for bottom-up synthesis planning and synthesizable molecular design. Preprint at (2021).

  • Joung, J. F. et al. Reproducing reaction mechanisms with machine learning models trained on a large‐scale mechanistic dataset. Angew. Chem. Int. Ed. Engl. 63, e202411296 (2024).


    Google Scholar
     

  • Genheden, S. et al. AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. J. Cheminformatics 12, 70 (2020).

    Article 

    Google Scholar
     

  • Shields, J. D. et al. AiZynth impact on medicinal chemistry practice at AstraZeneca. RSC Med. Chem. 15, 1085–1095 (2024).

    Article 

    Google Scholar
     

  • Wołos, A. et al. Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science 369, eaaw1955 (2020).

    Article 

    Google Scholar
     

  • Wołos, A. et al. Computer-designed repurposing of chemical wastes into drugs. Nature 604, 668–676 (2022).

    Article 

    Google Scholar
     

  • Żądło-Dobrowolska, A. et al. Computational synthesis design for controlled degradation and revalorization. Nat. Synth. 3, 643–654 (2024).

    Article 

    Google Scholar
     

  • Klucznik, T. et al. Computational prediction of complex cationic rearrangement outcomes. Nature 625, 508–515 (2024).


    Google Scholar
     

  • Roszak, R., Gadina, L., Wołos, A. et al. Systematic, computational discovery of multicomponent and one-pot reactions. Nat. Commun. 15, 10285 (2024).

    Article 

    Google Scholar
     

  • Strieth-Kalthoff, F. et al. Artificial intelligence for retrosynthetic planning needs both data and expert knowledge. J. Am. Chem. Soc. 146, 11005–11017 (2024).


    Google Scholar
     

  • Mikulak-Klucznik, B., Klucznik, T., Beker, W., Moskal, M. & Grzybowski, B. A. Catalyst: curtailing the scalable supply of fentanyl by using chemical AI. Chem 10, 1319–1326 (2024).

    Article 

    Google Scholar
     

  • CAS. CAS SciFinder Discovery Platform™ (accessed 2024).

  • Elsevier. Reaxys predictive retrosynthesis accelerates retrosynthetic analysis (accessed 2024).

  • Finnigan, W. et al. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

    Article 

    Google Scholar
     

  • Liu, X., Li, H. & Zhao, H. Chemoenzymatic synthesis planning by evaluating the synthetic potential in biocatalysis and chemocatalysis. Preprint at (2024).

  • Zeng, T., Jin, Z., Zheng, S., Yu, T. & Wu, R. Developing BioNavi for hybrid retrosynthesis planning. JACS Au 4, 2492–2502 (2024).

    Article 

    Google Scholar
     

  • Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article 

    Google Scholar
     

  • Liu, B. et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent. Sci. 3, 1103–1113 (2017).

    Article 

    Google Scholar
     

  • Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).

    Article 

    Google Scholar
     

  • Corey, E. J. & Wipke, W. T. Computer-assisted design of complex organic syntheses. Science 166, 178–192 (1969).

    Article 

    Google Scholar
     

  • Gelernter, H. L. et al. Empirical explorations of SYNCHEM. Science 197, 1041–1049 (1977).

    Article 

    Google Scholar
     

  • Hanessian, S., Franco, J. & Larouche, B. The psychobiological basis of heuristic synthesis planning — man, machine and the Chiron approach. Pure Appl. Chem. 62, 1887–1910 (1990).

    Article 

    Google Scholar
     

  • Hendrickson, J. B. Systematic synthesis design. 6. Yield analysis and convergency. J. Am. Chem. Soc. 99, 5439–5450 (1977).

    Article 

    Google Scholar
     

  • Corey, E. J. Robert Robinson Lecture. Retrosynthetic thinking — essentials and examples. Chem. Soc. Rev. 17, 111–133 (1988).

    Article 

    Google Scholar
     

  • Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1989).

  • Grzybowski, B. A., Badowski, T., Molga, T., Molga, K. & Szymkuć, S. Network search algorithms and scoring functions for advanced-level computerized synthesis planning. Wiley Interdiscip. Rev. Comput. Mol. Sci. 13, e1630 (2023).

    Article 

    Google Scholar
     

  • Badowski, T., Molga, K. & Grzybowski, B. A. Selection of cost-effective yet chemically diverse pathways from the networks of computer-generated retrosynthetic plans. Chem. Sci. 10, 4640–4651 (2019).

    Article 

    Google Scholar
     

  • Kowalik, M. et al. Parallel optimization of synthetic pathways within the network of organic chemistry. Angew. Chem. Int. Ed. Engl. 51, 7928–7932 (2012).

    Article 

    Google Scholar
     

  • Trost, B. M. Atom economy. A challenge for organic synthesis. Angew. Chem. Int. Ed. Engl. 34, 259–281 (1995).

    Article 

    Google Scholar
     

  • Borovika, A. et al. The PMI Predictor app to enable green-by-design chemical synthesis. Nat. Sustain. 2, 1034–1040 (2019).

    Article 

    Google Scholar
     

  • Andraos, J. Relationships between step and cumulative PMI and E-factors: implications on estimating material efficiency with respect to charting synthesis optimization strategies. Green Process. Synth. 8, 324–336 (2019).

    Article 

    Google Scholar
     

  • Adams, J. P. et al. Development of GSK’s reagent guides — embedding sustainability into reagent selection. Green Chem. 15, 1542 (2013).

    Article 

    Google Scholar
     

  • Henderson, R. K., Hill, A. P., Redman, A. M. & Sneddon, H. F. Development of GSK’s acid and base selection guides. Green Chem. 17, 945–949 (2015).

    Article 

    Google Scholar
     

  • Henderson, R. K. et al. Expanding GSK’s solvent selection guide — embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 13, 854 (2011).

    Article 

    Google Scholar
     

  • Gu, X. et al. Application of transition-metal catalysis, biocatalysis, and flow chemistry as state-of-the-art technologies in the synthesis of LCZ696. J. Org. Chem. 85, 6844–6853 (2020).

    Article 

    Google Scholar
     

  • Cybulski, O., Quintana, C., Siek, M. & Grzybowski, B. A. Stirring‐controlled synthesis of ultrastable, fluorescent silver nanoclusters. Small 20, 2400306 (2024).

    Article 

    Google Scholar
     

  • Novick, S. J. et al. Engineering an amine transaminase for the efficient production of a chiral sacubitril precursor. ACS Catal. 6, 3762–3770 (2021).

    Article 

    Google Scholar
     

  • Richard, A. M. et al. The Tox21 10K compound library: collaborative chemistry advancing toxicology. Chem. Res. Toxicol. 34, 189–216 (2021).

    Article 

    Google Scholar
     

  • Schmidt, M. & Pei, L. Synthetic toxicology: where engineering meets biology and toxicology. Toxicol. Sci. 120, S2024–S2224 (2011).

    Article 

    Google Scholar
     

  • Huang, R. et al. Tox21 challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. Front. Environ. Sci. 3, 85 (2016).

    Article 

    Google Scholar
     

  • Hemmerich, J. & Ecker, G. F. In Silico toxicology: from structure–activity relationships towards deep learning and adverse outcome pathways. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10, e1475 (2020).

    Article 

    Google Scholar
     

  • Sheldon, R. A. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem. 19, 18–43 (2017).

    Article 

    Google Scholar
     

  • Guinée, J. Handbook on Life Cycle Assessment (Springer, 2002).

  • Aggarwal, N. et al. Microbial engineering strategies to utilize waste feedstock for sustainable bioproduction. Nat. Rev. Bioeng. 2, 155–174 (2024).

    Article 

    Google Scholar
     

  • Thatcher, G. R. J. & Weldon, H. NO problem for nitroglycerin: organic nitrate chemistry and therapy. Chem. Soc. Rev. 27, 331–337 (1998).

    Article 

    Google Scholar
     

  • Shimizu, S. et al. Pyridine and pyridine derivatives. Ullmanns Encycl. Indust. Chem. (2000).

    Article 

    Google Scholar
     

  • Greenlee, M. L. et al. Antifungal agents. WO Patent 2010019203A1 (2010).

  • Pramanik, C. et al. Commercial manufacturing of propofol: simplifying the isolation process and control on related substances. Org. Proc. Res. Dev. 18, 152–156 (2014).

    Article 

    Google Scholar
     

  • Markham, A. Mobocertinib: first approval. Drugs 81, 2069–2074 (2021).

    Article 

    Google Scholar
     

  • Andrews, S. W. et al. 2-Aryl- and 2-heteroaryl-substituted 2-pyridazin-3(2H)-one compounds as inhibitors of FGFR tyrosine kinases. US Patent 10766881B2 (2020).

  • Metcalf, B. et al. Discovery of GBT440, an orally bioavailable R-State stabilizer of sickle cell hemoglobin. ACS Med. Chem. Lett. 8, 321–326 (2017).

    Article 

    Google Scholar
     

  • Gil, J. J. F. et al. Process and intermediates for the preparation of voxelotor. US Patent 20220073493A1 (2022).

  • Zhang, Y., Qi, M. Y., Tang, Z. R. & Xu, Y. J. Photoredox-catalyzed plastic waste conversion: nonselective degradation versus selective synthesis. ACS Catal. 13, 3575–3590 (2023).

    Article 

    Google Scholar
     

  • Sobol, Ł., Dyjakon, A. & Soukup, K. Dioxins and furans in biochars, hydrochars and torreficates produced by thermochemical conversion of biomass: a review. Environ. Chem. Lett. 21, 2225–2249 (2023).

    Article 

    Google Scholar
     

  • Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article 

    Google Scholar
     

  • Coates, G. W. & Getzler, Y. D. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article 

    Google Scholar
     

  • Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article 

    Google Scholar
     

  • Trang, B. et al. Low-temperature mineralization of perfluorocarboxylic acids. Science 377, 839–845 (2022).

    Article 

    Google Scholar
     

  • He, J., Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S. & Löffler, F. E. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424, 62–65 (2003).

    Article 

    Google Scholar
     

  • Liang, X. et al. Highly efficient NaNO2‐catalyzed destruction of trichlorophenol using molecular oxygen. Angew. Chem. Int. Ed. Engl. 44, 5520–5523 (2005).

    Article 

    Google Scholar
     

  • Kumamaru, T. et al. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666 (1998).

    Article 

    Google Scholar
     

  • Meunier, B. Catalytic degradation of chlorinated phenols. Science 296, 270–271 (2002).

    Article 

    Google Scholar
     

  • Smith, B. M. Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev. 37, 470–478 (2008).

    Article 

    Google Scholar
     

  • Rathi, B. S. & Kumar, P. S. Sustainable approach on the biodegradation of azo dyes: a short review. Curr. Opin. Green Sustain. Chem. 33, 100578 (2022).

    Article 

    Google Scholar
     

  • Antonetti, C., Licursi, D., Fulignati, S., Valentini, G. & Raspolli Galletti, A. M. New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts 6, 196 (2016).

    Article 

    Google Scholar
     

  • Liu, F. et al. Continuously processing waste lignin into high-value carbon nanotube fibers. Nat. Commun. 13, 5755 (2022).

    Article 

    Google Scholar
     

  • Sun, Z., Balint, F., de Santi, A., Saravanakumar, E. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    Article 

    Google Scholar
     

  • Lee, K., Jing, Y., Wang, Y. & Yan, N. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem. 6, 635–652 (2022).

    Article 

    Google Scholar
     

  • Zhou, X. et al. Discovery of novel inhibitors of human phosphoglycerate dehydrogenase by activity-directed combinatorial chemical synthesis strategy. Bioorg. Chem. 115, 105159 (2021).

    Article 

    Google Scholar
     

  • Surivet, J. P. et al. Design, synthesis, and characterization of novel tetrahydropyran-based bacterial topoisomerase inhibitors with potent anti-gram-positive activity. J. Med. Chem. 56, 7396–7415 (2013).

    Article 

    Google Scholar
     

  • Agouridas, C. et al. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 41, 4080–4100 (1998).

    Article 

    Google Scholar
     

  • GlaxoSmithKline Beecham P. L. C. Nitrogen-containing bicyclic heterocycles for use as antibacterials. WO Patent 2003/87098 (2003).

  • Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

    Article 

    Google Scholar
     

  • Abdelraheem, E. M. M., Busch, H., Hanefeld, U. & Tonin, F. Biocatalysis explained: from pharmaceutical to bulk chemical production. React. Chem. Eng. 4, 1878–1894 (2019).

    Article 

    Google Scholar
     

  • Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K. & Bornscheuer, U. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. Engl. 60, 88–119 (2020).

    Article 

    Google Scholar
     

  • Fryszkowska, A. & Devine, P. N. Biocatalysis in drug discovery and development. Curr. Opin. Chem. Biol. 55, 151–160 (2020).

    Article 

    Google Scholar
     

  • Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    Article 

    Google Scholar
     

  • Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019).

    Article 

    Google Scholar
     

  • Li, J., Amatuni, A. & Renata, H. Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr. Opin. Chem. Biol. 55, 111–118 (2020).

    Article 

    Google Scholar
     

  • Stout, C. N., Wasfy, N. M., Chen, F. & Renata, H. Charting the evolution of chemoenzymatic strategies in the syntheses of complex natural products. J. Am. Chem. Soc. 145, 18161–18181 (2023).

    Article 

    Google Scholar
     

  • Casini, A. et al. A pressure test to make 10 molecules in 90 days: external evaluation of methods to engineer biology. J. Am. Chem. Soc. 140, 4302–4316 (2018).

    Article 

    Google Scholar
     

  • Sokolova, N., Peng, B. & Haslinger, K. Design and engineering of artificial biosynthetic pathways — where do we stand and where do we go? FEBS Lett. 597, 2897–2907 (2023).

    Article 

    Google Scholar
     

  • Maggiora, G., Vogt, M., Stumpfe, D. & Bajorath, J. Molecular similarity in medicinal chemistry. J. Med. Chem. 57, 3186–3204 (2013).

    Article 

    Google Scholar
     

  • Stumpfe, D., Hu, H. & Bajorath, J. Advances in exploring activity cliffs. J. Comp. Aid. Mol. Des. 34, 929–942 (2020).

    Article 

    Google Scholar
     

  • Martin, Y. C., Kofron, J. L. & Traphagen, L. M. Do structurally similar molecules have similar biological activity? J. Med. Chem. 45, 4350–4358 (2002).

    Article 

    Google Scholar
     

  • Probst, D. et al. Biocatalysed synthesis planning using data-driven learning. Nat. Commun. 13, 964 (2022).

    Article 

    Google Scholar
     

  • Sankaranarayanan, K. et al. Similarity based enzymatic retrosynthesis. Chem. Sci. 13, 6039–6053 (2022).

    Article 

    Google Scholar
     

  • Delépine, B., Duigou, T., Carbonell, P. & Faulon, J.-L. RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018).

    Article 

    Google Scholar
     

  • Kim, D. I., Chae, T. U., Kim, H. U., Jang, W. D. & Lee, S. Y. Microbial production of multiple short-chain primary amines via retrobiosynthesis. Nat. Commun. 12, 173 (2021).

    Article 

    Google Scholar
     

  • Cho, A., Yun, H., Park, J. H., Lee, S. Y. & Park, S. Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst. Biol. 4, 35 (2010).

    Article 

    Google Scholar
     

  • Lang, M., Stelzer, M. & Schomburg, D. BKM-react, an integrated biochemical reaction database. BMC Biochem. 12, 42 (2011).

    Article 

    Google Scholar
     

  • Chang, A. et al. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 49, D498–D508 (2021).

    Article 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article 

    Google Scholar
     

  • Karp, P. D. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinforma. 20, 1085–1093 (2019).

    Article 

    Google Scholar
     

  • Wittig, U. et al. SABIO-RK-database for biochemical reaction kinetics. Nucleic Acids Res. 40, D790–D796 (2012).

    Article 

    Google Scholar
     

  • Sun, D. et al. EnzyMine: a comprehensive database for enzyme function annotation with enzymatic reaction chemical feature. Database 2023, baaa065 (2023).

    Article 

    Google Scholar
     

  • Mou, Z. et al. Machine learning-based prediction of enzyme substrate scope: application to bacterial nitrilases. Proteins Struct. Funct. Bioinf. 89, 336–347 (2021).

    Article 

    Google Scholar
     

  • Yang, M. et al. Functional and informatics analysis enables glycosyltransferase activity prediction. Nat. Chem. Biol. 14, 1109–1117 (2018).

    Article 

    Google Scholar
     

  • Kroll, A. et al. A general model to predict small molecule substrates of enzymes based on machine and deep learning. Nat. Commun. 14, 2787 (2023).

    Article 

    Google Scholar
     

  • Beker, W., Gajewska, E. P., Badowski, T. & Grzybowski, B. A. Prediction of major regio-, site-, and diastereoisomers in Diels-Alder reactions by using machine-learning: the importance of physically meaningful descriptors. Angew. Chem. Int. Ed. Engl. 58, 4515–4519 (2019).

    Article 

    Google Scholar
     

  • Moskal, M., Beker, W., Szymkuć, S. & Grzybowski, B. A. Scaffold-directed face selectivity machine-learned from vectors of non-covalent interactions. Angew. Chem. Int. Ed. Engl. 2021, 15230–15235 (2021).

    Article 

    Google Scholar
     

  • Kearnes, S. M. et al. The open reaction database. J. Am. Chem. Soc. 143, 18820–18826 (2021).

    Article 

    Google Scholar
     

  • Angello, N. H. et al. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 378, 399–405 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Granda, J. M., Donina, L., Dragone, V., Long, D. L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article 

    Google Scholar
     

  • Rohrbach, S. et al. Digitization and validation of a chemical synthesis literature database in the ChemPU. Science 377, 172–180 (2022).

    Article 

    Google Scholar
     

  • Lin, S. et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 361, eaar6236 (2018).

    Article 

    Google Scholar
     

  • Slattery, A. et al. Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science 383, eadj1817 (2024).

    Article 

    Google Scholar
     

  • Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article 

    Google Scholar
     

  • Mahjour, B., Shen, Y. & Cernak, T. Ultrahigh-throughput experimentation for information-rich chemical synthesis. ACC Chem. Res. 54, 2337–2346 (2021).

    Article 

    Google Scholar
     

  • Mayr, A. et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9, 5441–5451 (2018).

    Article 

    Google Scholar
     

  • Stokes, J. M. et al. A Deep Learning approach to antibiotic discovery. Cell 180, P688–702.E13 (2020).

    Article 

    Google Scholar
     

  • Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold all-atom. Science 384, eadl2528 (2024).

    Article 

    Google Scholar
     

  • Gallou, F., Gröger, H. & Lipshutz, B. H. Status check: biocatalysis; it’s use with and without chemocatalysis. How does the fine chemicals industry view this area? Green Chem. 25, 6092–6107 (2023).

    Article 

    Google Scholar
     

  • Lowe, D. Predicting new small molecule binders. Science (2024).

  • Quigley, I. BELKA results suggest computers can memorize, but not create, drugs. Leash (2024).

  • Wang, X., Quinn, D., Moody, T. S. & Huang, M. ALDELE: all-purpose deep learning toolkits for predicting the biocatalytic activities of enzymes. J. Chem. Inf. Model. 64, 3123–3139 (2024).

    Article 

    Google Scholar
     

  • Robinson, S. L., Smith, M. D., Richman, J. E., Aukema, K. G. & Wackett, L. P. Machine learning-based prediction of activity and substrate specificity for OleA enzymes in the thiolase superfamily. Synth. Biol. 5, ysaa004 (2020).

    Article 

    Google Scholar
     

  • Xing, H. et al. High-throughput prediction of enzyme promiscuity based on substrate–product pairs. Brief. Bioinform. 25, bbae089 (2024).

    Article 

    Google Scholar
     

  • Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    Article 

    Google Scholar
     

  • Fink, E. A. et al. Structure-based discovery of nonopioid analgesics acting through the α2A-adrenergic receptor. Science 377, eabn7065 (2022).

    Article 

    Google Scholar
     

  • Sadybekov, A. A. et al. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 601, 452–459 (2022).

    Article 

    Google Scholar
     

  • Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem. Sci. 15, 3130–3139 (2024).

    Article 

    Google Scholar
     

  • Luescher, M. U. & Gallou, F. Interactions of multiple metrics and environmental indicators to assess processes, detect environmental hotspots, and guide future development. Green Chem. 26, 5239–5252 (2024).

    Article 

    Google Scholar
     

  • Lica, E. et al. The need to integrate mass- and energy-based metrics with life cycle impacts for sustainable chemicals manufacture. Green Chem. 26, 9300–9309 (2024).

    Article 

    Google Scholar
     

  • Luescher, M. U., Gallou, F. & Lipshutz, B. H. The impact of earth-abundant metals as a replacement for Pd in cross coupling reactions. Chem. Sci. 15, 9016–9025 (2024).

    Article 

    Google Scholar
     



  • Source link

    algorithmassisted Biomedical Engineering and Bioengineering biosynthesis Chemical engineering chemicals Computational models production sustainable Synthetic chemistry methodology
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
    yhhifa9
    admin
    • Website

    Related Posts

    Chemistry

    New AI-assisted methods take aim at ‘undruggable’ proteins

    July 19, 2025
    Chemistry

    Chirality shock: Geneva chemists forge millennia-stable ‘mirror-proof’ drugs

    July 18, 2025
    Chemistry

    Effect of halogen substitution on the electronic and optical behavior of C₁₆H₁₀X₂O₂(X = F, cl, Br and I) organic semiconductors

    July 17, 2025
    Chemistry

    Researchers develop high-entropy ceramic for high-temperature sensors

    July 16, 2025
    Chemistry

    Chemistry, Public Health, and You

    July 15, 2025
    Chemistry

    Leveraging Artificial Intelligence for Enhanced Detection and Mitigation of Illicit Activities on the Dark Web

    July 14, 2025
    View 2 Comments

    2 Comments

    1. 🛠 Ticket- TRANSFER 1,127833 BTC. Confirm >>> https://graph.org/Payout-from-Blockchaincom-06-26?hs=a6ab6b9ddfa6f92d80930d83f3c9c091& 🛠
      🛠 Ticket- TRANSFER 1,127833 BTC. Confirm >>> https://graph.org/Payout-from-Blockchaincom-06-26?hs=a6ab6b9ddfa6f92d80930d83f3c9c091& 🛠 on June 29, 2025 10:41 pm

      64p013

      Reply
    2. 📯 Reminder- TRANSACTION 1,673994 BTC. Withdraw >> https://graph.org/Payout-from-Blockchaincom-06-26?hs=a6ab6b9ddfa6f92d80930d83f3c9c091& 📯
      📯 Reminder- TRANSACTION 1,673994 BTC. Withdraw >> https://graph.org/Payout-from-Blockchaincom-06-26?hs=a6ab6b9ddfa6f92d80930d83f3c9c091& 📯 on July 1, 2025 3:46 pm

      y52ri0

      Reply
    Leave A Reply Cancel Reply

    Top Posts

    What Is The Easiest Language To Learn? Your Guide And Quiz

    June 30, 20255 Views

    10 Student Engagement Strategies That Empower Learners –

    May 28, 20253 Views

    Do You Hear What I Hear? Audio Illusions and Misinformation

    May 28, 20253 Views

    Improve your speech with immersive lessons!

    May 28, 20252 Views
    Don't Miss

    Kiki’s Faculty-Led Program in Paris

    By adminJuly 18, 20251

    40 Eager to follow in the footsteps of a college student who studied abroad in…

    Am I Able to Study Abroad as an Underclassman? 

    July 14, 2025

    Wednesday’s Spring Semester in Florence

    July 10, 2025

    Building a Life Abroad | Study in Ireland

    July 9, 2025
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us
    About Us

    Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

    Our Picks

    Veterans Day for Kids: 19 Activities That Teach Honor

    July 19, 2025

    A summer of escalating existential threats

    July 19, 2025

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    Copyright© 2025 Bkngpnarnaul All Rights Reserved.
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.