Pushpamalar, J. et al. Development of a polysaccharide-based hydrogel drug delivery system (DDS): an update. Gels 7, 153 (2021).
Radulescu, D.-M., Neacsu, I. A., Grumezescu, A.-M. & Andronescu, E. New insights of scaffolds based on hydrogels in tissue engineering. Polymers 14, 799 (2022).
Bao, J., Corke, H. & Sun, M. Genetic diversity in the physicochemical properties of waxy rice (Oryza sativa L) starch. J. Sci. Food Agric. 84, 1299–1306 (2004).
Takeshita, D. S., Zhao, D. S., Malfait, D. W. J. & Koebel, D. M. M. Chemistry of chitosan aerogels: three-dimensional pore control for tailored applications. Angew. Chem. Int Ed. 60, 9828–9851 (2021).
Alavi, F. & Ciftci, O. N. Effect of starch type and chitosan supplementation on physicochemical properties, morphology, and oil structuring capacity of composite starch bioaerogels. Food Hydrocoll. 141, 108637 (2023).
Liu, M. et al. De-branching of starch molecules enhanced the complexation with chitosan and its potential utilization for delivering hydrophobic compounds. Food Hydrocoll. 148, 109498 (2024).
Dragan, E. S., Ghiorghita, C. A., Dinu, M. V., Duceac, I. A. & Coseri, S. Fabrication of self-antibacterial chitosan/oxidized starch polyelectrolyte complex sponges for controlled delivery of curcumin. Food Hydrocoll. 135, 108147 (2023).
Chen, L., Hao, H., Zhang, W. & Shao, Z. Adsorption mechanism of copper ions in aqueous solution by chitosan–carboxymethyl starch composites. J. Appl. Polym. Sci. 137, 48636 (2020).
Fan, C. et al. Chitosan decoration enhanced the thermal and ultraviolet resistance of vitamin A-vitamin D coencapsulated in OSA starch-stabilized emulsion by regulating viscoelasticity, interfacial thickness and structure. Food Res. Int. 201, 115574 (2025).
Chen, S. et al. Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: a review. Int. J. Biol. Macromol. 207, 81–89 (2022).
Aslzad, S. et al. Chitosan/dialdehyde starch hybrid in situ forming hydrogel for ocular delivery of betamethasone. Mater. Today Commun. 33, 104873 (2022).
Sumardiono, S. et al. Physicochemical properties of sago ozone oxidation: the effect of reaction time, acidity, and concentration of starch. Foods 10, 1309 (2021).
Avila-Sierra, A., Vicaria, J. M., Martinez-Gallegos, J. F., Canadas, S. & Jurado-Alameda, E. Kinetic modeling of advanced starch oxidation with ozone in basic solutions. Ozone Sci. Eng. 45, 572–581 (2023).
Castanha, N., Matta Junior, M. D. & Augusto, P. E. D. Potato starch modification using the ozone technology. Food Hydrocoll. 66, 343–356 (2017).
Seo, S., King, J. M. & Prinyawiwatkul, W. Simultaneous depolymerization and decolorization of chitosan by ozone treatment. J. Food Sci. 72, C522–C526 (2007).
Fang, X. et al. Green synthesis of starch/chitosan complex via ozone-mediated Schiff reaction: Structure, thermal behaviors and surface properties. Int. J. Biol. Macromol. 284, 138103 (2025).
Kizil, R., Irudayaraj, J. & Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 50, 3912–3918 (2002).
Hsu, S.-H. et al. Chitosan as scaffold materials: effects of molecular weight and degree of deacetylation. J. Polym. Res. 11, 141–147 (2004).
Wu, C., Sun, R., Zhang, Q. & Zhong, G. Synthesis and characterization of citric acid esterified canna starch (RS4) by semi-dry method using vacuum-microwave-infrared assistance. Carbohydr. Polym. 250, 116985 (2020).
Qin, Y., Wang, J., Qiu, C., Xu, X. & Jin, Z. A dual cross-linked strategy to construct moldable hydrogels with high stretchability, good self-recovery, and self-healing capability. J. Agric. Food Chem. 67, 3966–3980 (2019).
Li, Y. et al. In situ hydrogel constructed by starch-based nanoparticles via a Schiff base reaction. Carbohydr. Polym. 110, 87–94 (2014).
Huang, S., Chao, C., Yu, J., Copeland, L. & Wang, S. New insight into starch retrogradation: the effect of short-range molecular order in gelatinized starch. Food Hydrocoll. 120, 106921 (2021).
Liu, W. et al. Vanillin-assisted preparation of chitosan-betaine stabilized corn starch gel: gel properties and microstructure characteristics. Food Hydrocoll. 148, 109510 (2024).
Cahyana, Y. et al. Non-starch contents affect the susceptibility of banana starch and flour to ozonation. J. Food Sci. Technol. 55, 1726–1733 (2018).
Facchinatto, W. M. et al. Evaluation of chitosan crystallinity: a high-resolution solid-state NMR spectroscopy approach. Carbohydr. Polym. 250, 116891 (2020).
Sahariah, P., Árnadóttir, B. & Másson, M. Synthetic strategy for selective N -modified and O -modified PEGylated chitosan derivatives. Eur. Polym. J. 81, 53–63 (2016).
Zhu, C. et al. Preparation and characterization of hydroxypropyl chitosan modified with nisin. Int. J. Biol. Macromol. 105, 1017–1024 (2017).
Nicolas, B., Stéphane, G. & Véronique, C. Advances on selective C-6 oxidation of chitosan by TEMPO. Biomacromolecules 9, 2377–2382 (2008).
Lima, D. C. et al. Ozone modification of arracacha starch: effect on structure and functional properties. Food Hydrocoll. 108, (2020).
Özaslan, Z. T. & İbanoğlu, Ş. Ozonation of corn starch in the presence of guar gum: rheological, thermal and antioxidant properties. Food Hydrocoll. 124, (2022).
Maniglia, B. C. et al. Hydrogels based on ozonated cassava starch: Effect of ozone processing and gelatinization conditions on enhancing 3D-printing applications. Int. J. Biol. Macromol. 138, 1087–1097 (2019).
Hu, J. et al. Modified Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: structural, physicochemical and in vitro digestible properties. Food Hydrocoll. 125, 107365 (2022).
Yu, Y., Wang, Y. -n, Ding, W., Zhou, J. & Shi, B. Preparation of highly-oxidized starch using hydrogen peroxide and its application as a novel ligand for zirconium tanning of leather. Carbohydr. Polym. 174, 823–829 (2017).
Ding, W., Wang, Y., Zhang, W., Shi, Y. & Wang, D. Effect of ozone treatment on physicochemical properties of waxy rice flour and waxy rice starch. Int. J. Food Sci. Technol. 50, 744–749 (2014).
Castanha, N., Santos, D. N. E., Cunha, R. L. & Augusto, P. E. D. Properties and possible applications of ozone-modified potato starch. Food Res. Int. 116, 1192–1201 (2019).
Horn, M. M., Martins, V. C. A. & Plepis, A. M.dG. Characterization of films and film-forming solutions of chitosan/thermoplastic rice starch associations: Role of starch oxidation and plasticizer type in the molecular interactions. Polym. Eng. Sci. 63, 4127–4139 (2023).
Zhou, Y. et al. Effect of oxidation level on the inclusion capacity and solution stability of oxidized amylose in aqueous solution. Carbohydr. Polym. 138, 41–48 (2016).
Abegunde, O. K., Mu, T.-H., Chen, J.-W. & Deng, F.-M. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocoll. 33, 169–177 (2013).
Chan, H.-T. et al. Molecular structure, rheological and thermal characteristics of ozone-oxidized starch. Food Chem. 126, 1019–1024 (2011).
Sangseethong, K. et al. Physicochemical properties of oxidized cassava starch prepared under various alkalinity levels. Starch-Stärke 61, 92–100 (2009).
Ma, S., Zhu, P. & Wang, M. Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocoll. 89, 234–240 (2019).
Jiang, X.-Y. et al. Gel properties and interactions of scallop (Patinopecten yessoensis) male gonad hydrolysates and nonionic polysaccharide mixtures. Food Chem. 394, 133482 (2022).
Hu, Y., Li, C., Tan, Y., McClements, D. J. & Wang, L. Insight of rheology, water distribution and in vitro digestive behavior of starch based-emulsion gel: impact of potato starch concentration. Food Hydrocoll. 132, 107859 (2022).
Luo, Y. et al. Effect of Mesona chinensis polysaccharide on the retrogradation properties of maize and waxy maize starches during storage. Food Hydrocoll. 101, 105538–105538 (2020).
Flores-Hernandez, C. G. et al. Starch modified with chitosan and reinforced with feather keratin materials produced by extrusion process: an alternative to starch polymers. Starch – Stärke 70, (2018).
