Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

The Importance of Connection in the Age of AI – Faculty Focus

October 13, 2025

What is Struggly and How Can Teachers Use It To Teach Math?

October 13, 2025

How The Trevor Project Scaled Lifesaving Volunteer Training

October 13, 2025
Facebook X (Twitter) Instagram
Monday, October 13
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Math»Smooth numbers and max-entropy | What’s new
Math

Smooth numbers and max-entropy | What’s new

adminBy adminSeptember 18, 20253 Comments6 Mins Read4 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Smooth numbers and max-entropy | What’s new
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Given a threshold {y>1}, a {y}-smooth number (or {y}-friable number) is a natural number {n} whose prime factors are all at most {y}. We use {\Psi(x,y)} to denote the number of {y}-smooth numbers up to {x}. In studying the asymptotic behavior of {\Psi(x,y)}, it is customary to write {y} as {x^{1/u}} (or {x} as {y^u}) for some {u>0}. For small values of {u}, the behavior is straightforward: for instance if {0 < u < 1}, then all numbers up to {x} are automatically {y}-smooth, so

\displaystyle  \Psi(x,y) \sim x

in this case. If {1 < u < 2}, the only numbers up to {x} that are not {y}-smooth are the multiples of primes {p} between {y} and {x}, so

\displaystyle  \Psi(x,y) \sim x - \sum_{y < p \leq x} (\frac{x}{p} + O(1))

\displaystyle  \sim x - x (\log\log x - \log\log y)

\displaystyle  \sim x (1 - \log u)

where we have employed Mertens’ second theorem. For {2 < u < 3}, there is an additional correction coming from multiples of two primes between {y} and {x}; a straightforward inclusion-exclusion argument (which we omit here) eventually gives

\displaystyle  \Psi(x,y) \sim x (1 - \log u + \int_2^u \frac{\log(t-1)}{t} dt)

in this case.

More generally, for any fixed {u>0}, de Bruijn showed that

\displaystyle  \Psi(x, y) \sim \rho(u) x

where {\rho(u)} is the Dickman function. This function is a piecewise smooth, decreasing function of {u}, defined by the delay differential equation

\displaystyle  u \rho'(u) + \rho(u-1) = 0

with initial condition {\rho(u) = 1} for {0 \leq u \leq 1}.

The asymptotic behavior of {\rho(u)} as {u \rightarrow \infty} is rather complicated. Very roughly speaking, it has inverse factorial behavior; there is a general upper bound {\rho(u) \leq 1/\Gamma(u+1)}, and a crude asymptotic

\displaystyle  \rho(u) = u^{-u+o(u)} = \exp( - u \log u + o(u \log u)).

With a more careful analysis one can refine this to

\displaystyle  \rho(u) = \exp( - u \log u - u \log\log u + u + o(u)); \ \ \ \ \ (1)

and with a very careful application of the Laplace inversion formula one can in fact show that

\displaystyle  \rho(u) \sim \sqrt{\frac{\xi'(u)}{2\pi}} \exp( \gamma - u \xi(u) + \int_0^{\xi(u)} \frac{e^s - 1}{s} ds) \ \ \ \ \ (2)

where {\gamma} is the Euler-Mascheroni constant and {\xi(u)} is defined implicitly by the equation

\displaystyle  e^{\xi(u)} - 1 = u \xi(u). \ \ \ \ \ (3)

One cannot write {\xi(u)} in closed form using elementary functions, but one can express it in terms of the Lambert {W} function as {\xi(u) = -W(-\frac{1}{u} e^{-1/u}) - 1/u}. This is not a particularly enlightening expression, though. A more productive approach is to work with approximations. It is not hard to get the initial approximation {\xi(u) \approx \log u} for large {u}, which can then be re-inserted back into (3) to obtain the more accurate approximation

\displaystyle  \xi(u) = \log u + \log\log u + O(1)

and inserted once again to obtain the refinement

\displaystyle  \xi(u) = \log u + \log\log u + O(\frac{\log\log u}{\log u}).

We can now see that (2) is consistent with previous asymptotics such as (1), after comparing the integral {\int_0^{\xi(u)} \frac{e^s - 1}{s} ds} to

\displaystyle  \int_0^{\xi(u)} \frac{e^s - 1}{\xi(u)} ds = u - 1.

For more details of these results, one can see for instance this survey by Granville.

This asymptotic (2) is quite complicated, and so one does not expect there to be any simple argument that could recover it without extensive computation. However, it turns out that one can use a “maximum entropy” analysis to get a reasonably good heuristic approximation to (2), that at least reveals the role of the mysterious function {\xi(u)}. The purpose of this blog post is to give this heuristic.

Viewing {x = y^u}, the task is to try to count the number of {y}-smooth numbers of magnitude {y^u}. We will propose a probabilistic model to generate {y}-smooth numbers as follows: for each prime {p \leq y}, select the prime {p} with an independent probability {c_p/p} for some coefficient {c_p}, and then multiply all the selected primes together. This will clearly generate a random {y}-smooth number {n}, and by the law of large numbers, the (log-)magnitude of this number should be approximately

\displaystyle  \log n \approx \sum_{p \leq y} \frac{c_p}{p} \log p, \ \ \ \ \ (4)

(where we will be vague about what “{\approx}” means here), so to obtain a number of magnitude about {y^u}, we should impose the constraint

\displaystyle  \sum_{p \leq y} \frac{c_p}{p} \log p = u \log y. \ \ \ \ \ (5)

The indicator {1_{p|n}} of the event that {p} divides this number is a Bernoulli random variable with mean {c_p/p}, so the Shannon entropy of this random variable is

\displaystyle  \mathbf{H}(1_{p|n}) = - \frac{c_p}{p} \log(\frac{c_p}{p}) - (1 - \frac{c_p}{p}) \log(1 - \frac{c_p}{p}).

If {c_p} is not too large, then Taylor expansion gives the approximation

\displaystyle  \mathbf{H}(1_{p|n}) \approx \frac{c_p}{p} \log p - \frac{c_p}{p} \log c_p + \frac{c_p}{p}.

Because of independence, the total entropy of this random variable {n} is

\displaystyle  \mathbf{H}(n) = \sum_{p \leq y} \mathbf{H}(1_{p|n});

inserting the previous approximation as well as (5), we obtain the heuristic approximation

\displaystyle  \mathbf{H}(n) \approx u \log y - \sum_{p \leq y} \frac{c_p}{p} (\log c_p - 1).

The asymptotic equipartition property of entropy, relating entropy to microstates, then suggests that the set of numbers {n} that are typically generated by this random process should have cardinality approximately

\displaystyle  \exp(\mathbf{H}(n)) \approx \exp\left(u \log y - \sum_{p \leq y} \frac{c_p}{p} (\log c_p - 1)\right)

\displaystyle  = \exp\left(- \sum_{p \leq y} \frac{c_p \log c_p - c_p}{p}\right) x.

Using the principle of maximum entropy, one is now led to the approximation

\displaystyle  \rho(u) \approx \exp\left(- \sum_{p \leq y} \frac{c_p \log c_p - c_p}{p}\right). \ \ \ \ \ (6)

where the weights {c_p} are chosen to maximize the right-hand side subject to the constraint (5).

One could solve this constrained optimization problem directly using Lagrange multipliers, but we simplify things a bit by passing to a continuous limit. We take a continuous ansatz {c_p = f(\log p / \log y)}, where {f: [0,1] \rightarrow {\bf R}} is a smooth function. Using Mertens’ theorem, the constraint (5) then heuristically becomes

\displaystyle  \int_0^1 f(t)\ dt = u \ \ \ \ \ (7)

and the expression (6) simplifies to

\displaystyle  \rho(u) \approx \exp( - \int_0^1 \frac{f(t) \log f(t) - f(t)}{t}\ dt). \ \ \ \ \ (8)

So the entropy maximization problem has now been reduced to the problem of minimizing the functional {\int_0^1 \frac{f(t) \log f(t) - f(t)}{t}\ dt} subject to the constraint (7). The astute reader may notice that the integral in (8) might diverge at {t=0}, but we shall ignore this technicality for the sake of the heuristic arguments.

This is a standard calculus of variations problem. The Euler-Lagrange equation for this problem can be easily worked out to be

\displaystyle  \frac{\log f(t)}{t} = \lambda

for some Lagrange multiplier {\lambda}; in other words, the optimal {f} should have an exponential form {f(t)= e^{\lambda t}}. The constraint (7) then becomes

\displaystyle  \frac{e^\lambda - 1}{\lambda} = u

and so the Lagrange multiplier {\lambda} is precisely the mysterious quantity {\xi(u)} appearing in (2)! The formula (8) can now be evaluated as

\displaystyle  \rho(u) \approx \exp\left( - \int_0^1 \frac{e^{\xi(u) t} \xi(u) t - e^{\xi(u) t}}{t}\ dt \right)

\displaystyle  \approx \exp\left( - e^{\xi(u)} + 1 + \int_0^1 \frac{e^{\xi(u) t} - 1}{t}\ dt + \int_0^1 \frac{1}{t}\ dt \right)

\displaystyle  \approx \exp\left( - u \xi(u) + \int_0^{\xi(u)} \frac{e^s - 1}{s}\ ds + C\right)

where {C} is the divergent constant

\displaystyle  C = \int_0^1 \frac{1}{t}\ dt.

This recovers a large fraction of (2)! It is not completely accurate for multiple reasons. One is that the hypothesis of joint independence on the events {p|n} is unrealistic when trying to confine {n} to a single scale {x}; this comes down ultimately to the subtle differences between the Poisson and Poisson-Dirichlet processes, as discussed in this previous blog post, and is also responsible for the otherwise mysterious {e^\gamma} factor in Mertens’ third theorem; it also morally explains the presence of the same {e^\gamma} factor in (2). A related issue is that the law of large numbers (4) is not exact, but admits gaussian fluctuations as per the central limit theorem; morally, this is the main cause of the {\sqrt{\frac{\xi'(u)}{2\pi}}} prefactor in (2).

Nevertheless, this demonstrates that the maximum entropy method can achieve a reasonably good heuristic understanding of smooth numbers. In fact we also gain some insight into the “anatomy of integers” of such numbers: the above analysis suggests that a typical {y}-smooth number {n} will be divisible by a given prime {p \sim y^t} with probability about {e^{\xi(u) t}/p}. Thus, for {t = 1 - O(1/\log u)}, the probability of being divisible by {p} is elevated by a factor of about {\asymp e^{\xi(u)} \asymp u \log u} over the baseline probability {1/p} of an arbitrary (non-smooth) number being divisible by {p}; so (by Mertens’ theorem) a typical {y}-smooth number is actually largely comprised of something like {\asymp u} prime factors all of size about {y^{1-O(1/\log u)}}, with the smaller primes contributing a lower order factor. This is in marked contrast with the anatomy of a typical (non-smooth) number {n}, which typically has {O(1)} prime factors in each hyperdyadic scale {[\exp\exp(k), \exp\exp(k+1)]} in {[1,n]}, as per Mertens’ theorem.



Source link

maxentropy Numbers Smooth Whats
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
yhhifa9
admin
  • Website

Related Posts

Math

Number of Days in a Year | Days Of The Year | Leap Year

October 11, 2025
Educational Technology

Dynamic Learning 2.0: A Framework for What’s Next (Part 1)

October 8, 2025
Math

Addition of Whole Numbers Worksheet | Free Addition Worksheets

October 8, 2025
Math

13 Times Table | Read and Write Multiplication Table of 13|Times Table

October 5, 2025
Language Learning

Revising vs. Editing vs. Proofreading: What’s the Difference?

October 3, 2025
Math

13 Times Table Multiplication Chart |Exercise on 13 Times Table |Video

October 2, 2025
View 3 Comments

3 Comments

  1. Ana4963
    Ana4963 on September 18, 2025 9:46 am

    https://shorturl.fm/KhOxH

    Reply
  2. Marie3878
    Marie3878 on September 18, 2025 2:27 pm

    https://shorturl.fm/PBOeI

    Reply
  3. Kingston4566
    Kingston4566 on September 19, 2025 7:21 am

    https://shorturl.fm/plVxz

    Reply
Leave A Reply Cancel Reply

Top Posts

Improve your speech with immersive lessons!

May 28, 202529 Views

2024 in math puzzles. – Math with Bad Drawings

July 22, 202528 Views

Hannah’s Spring Semester in Cannes

May 28, 202528 Views

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202527 Views
Don't Miss

Ally’s January Term in Rome, Italy 

By adminOctober 13, 20250

71 Eager to follow in the footsteps of a college student who studied abroad in…

Maya’s Summer Internship in London

October 9, 2025

Meet College Students Who Studied Abroad in Costa Rica

October 5, 2025

Best Fall Foliage Around the World

October 1, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

The Importance of Connection in the Age of AI – Faculty Focus

October 13, 2025

What is Struggly and How Can Teachers Use It To Teach Math?

October 13, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.