Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

February Lesson Plans for Special Education

January 22, 2026

Designing the 2026 Classroom: Emerging Learning Trends in an AI-Powered Education System – Faculty Focus

January 22, 2026

A Brief Introduction to Buckminster Fuller and His Techno-Optimistic Ideas

January 22, 2026
Facebook X (Twitter) Instagram
Thursday, January 22
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Math»Rogers’ theorem on sieving | What’s new
Math

Rogers’ theorem on sieving | What’s new

adminBy adminJanuary 20, 2026No Comments5 Mins Read1 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Rogers’ theorem on sieving | What’s new
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


A basic problem in sieve theory is to understand what happens when we start with the integers {{\bf Z}} (or some subinterval of the integers) and remove some congruence classes {a_i \pmod{q_i}} for various moduli {q_i}. Here we shall concern ourselves with the simple setting where we are sieving the entire integers rather than an interval, and are only removing a finite number of congruence classes {a_1 \pmod{q_1}, \ldots, a_k \pmod{q_k}}. In this case, the set of integers that remain after the sieving is periodic with period {Q = \mathrm{lcm}(q_1,\dots,q_k)}, so one work without loss of generality in the cyclic group {{\bf Z}/Q{\bf Z}}. One can then ask: what is the density of the sieved set

\displaystyle  \{ n \in {\bf Z}/Q{\bf Z}: n \neq a_i \hbox{ mod } q_i \hbox{ for all } i=1,\ldots,k \}? \ \ \ \ \ (1)


If the {q_i} were all coprime, then it is easy to see from the Chinese remainder theorem that the density is given by the product

\displaystyle  \prod_{i=1}^k \left(1 - \frac{1}{q_i}\right).

However, when the {q_i} are not coprime, the situation is more complicated. One can use the inclusion-exclusion formula to get a complicated expression for the density, but it is not easy to work with. Sieve theory also supplies one with various useful upper and lower bounds (starting with the classical Bonferroni inequalities), but do not give exact formulae.

In this blog post I would like to note one simple fact, due to Rogers, that one can say about this problem:

Theorem 1 (Rogers’ theorem) For fixed {q_1,\dots,q_k}, the density of the sieved set is maximized when all the {a_i} vanish. Thus,

\displaystyle  |\{ n \in {\bf Z}/Q{\bf Z}: n \neq a_i \hbox{ mod } q_i \hbox{ for all } i=1,\ldots,k \}|

\displaystyle \leq |\{ n \in {\bf Z}/Q{\bf Z}: n \neq 0 \hbox{ mod } q_i \hbox{ for all } i=1,\ldots,k \}|.

Example 2 If one sieves out {1 \pmod{2}}, {1 \pmod{3}}, and {2 \pmod{6}}, then only {0 \pmod{6}} remains, giving a density of {1/6}. On the other hand, if one sieves out {0 \pmod{2}}, {0 \pmod{3}}, and {0 \pmod{6}}, then the remaining elements are {1} and {5 \pmod{6}}, giving the larger density of {2/6}.

This theorem is somewhat obscure: its only appearance in print is in pages 242-244 of this 1966 text of Halberstam and Roth, where the authors write in a footnote that the result is “unpublished; communicated to the authors by Professor Rogers”. I have only been able to find it cited in three places in the literature: in this 1996 paper of Lewis, in this 2007 paper of Filaseta, Ford, Konyagin, Pomerance, and Yu (where they credit Tenenbaum for bringing the reference to their attention), and is also briefly mentioned in this 2008 paper of Ford. As far as I can tell, the result is not available online, which could explain why it is rarely cited (and also not known to AI tools). This became relevant recently with regards to Erdös problem 281, posed by Erdös and Graham in 1980, which was solved recently by Neel Somani through an AI query by an elegant ergodic theory argument. However, shortly after this solution was located, it was discovered by KoishiChan that Rogers’ theorem reduced this problem immediately to a very old result of Davenport and Erdös from 1936. Apparently, Rogers’ theorem was so obscure that even Erdös was unaware of it when posing the problem!

Modern readers may see some similarities between Rogers’ theorem and various rearrangement or monotonicity inequalites, suggesting that the result may be proven by some sort of “symmetrization” or “compression” method. This is indeed the case, and is basically Rogers’ original proof. We can modernize a bit as follows. Firstly, we can abstract {{\bf Z}/Q{\bf Z}} into a finite cyclic abelian group {G}, with residue classes now becoming cosets of various subgroups of {G}. We can take complements and restate Rogers’ theorem as follows:

Theorem 3 (Rogers’ theorem, again) Let {a_1+H_1, \dots, a_k+H_k} be cosets of a finite cyclic abelian group {G}. Then

\displaystyle  |\bigcup_{j=1}^k a_j + H_j| \geq |\bigcup_{j=1}^k H_j|.

Example 4 Take {G = {\bf Z}/6{\bf Z}}, {H_1 = 2{\bf Z}/6{\bf Z}}, {H_2 = 3{\bf Z}/6{\bf Z}}, and {H_3 = 6{\bf Z}/6{\bf Z}}. Then the cosets {1 + H_1}, {1 + H_2}, and {2 + H_3} cover the residues {\{1,2,3,4,5\}}, with a cardinality of {5}; but the subgroups {H_1,H_2,H_3} cover the residues {\{0,2,3,4\}}, having the smaller cardinality of {4}.

Intuitively: “sliding” the cosets {a_i+H_i} together reduces the total amount of space that these cosets occupy. As pointed out in comments, the requirement of cyclicity is crucial; four lines in a finite affine plane already suffice to be a counterexample otherwise.

By factoring the cyclic group into p-groups, Rogers’ theorem is an immediate consequence of two observations:

Theorem 5 (Rogers’ theorem for cyclic groups of prime order) Rogers’ theorem holds when {G = {\bf Z}/p^n {\bf Z}} for some prime power {p^n}.

Theorem 6 (Rogers’ theorem preserved under products) If Rogers’ theorem holds for two finite abelian groups {G_1, G_2} of coprime orders, then it also holds for the product {G_1 \times G_2}.

The case of cyclic groups of prime order is trivial, because the subgroups of {G} are totally ordered. In this case {\bigcup_{j=1}^k H_j} is simply the largest of the {H_j}, which has the same size as {a_j + H_j} and thus has lesser or equal cardinality to {\bigcup_{j=1}^k a_j + H_j}.

The preservation of Rogers’ theorem under products is also routine to verify. By the coprime orders of {G_1,G_2} and standard group theoretic arguments (e.g., Goursat’s lemma, the Schur–Zassenhaus theorem, or the classification of finite abelian groups), one can see that any subgroup {H_j} of {G_1 \times G_2} splits as a direct product {H_j = H_{j,1} \times H_{j,2}} of subgroups of {G_1,G_2} respectively, so the cosets {a_j + H_j} also split as

\displaystyle  a_j + H_j = (a_{j,1} + H_{j,1}) \times (a_{j,2} + H_{j,2}).

Applying Rogers’ theorem for {G_2} to each “vertical slice” of {G_1 \times G_2} and summing, we see that

\displaystyle  |\bigcup_{j=1}^k (a_{j,1} + H_{j,1}) \times (a_{j,2} + H_{j,2})| \geq |\bigcup_{j=1}^k (a_{j,1} + H_{j,1}) \times H_{j,2}|

and then applying Rogers’ theorem for {G_1} to each “horizontal slice” of {G_1 \times G_2} and summing, we obtain

\displaystyle  |\bigcup_{j=1}^k (a_{j,1} + H_{j,1}) \times H_{j,2}| \geq |\bigcup_{j=1}^k H_{j,1} \times H_{j,2}|.

Combining the two inequalities, we obtain the claim.



Source link

Rogers sieving Theorem Whats
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Math

Comparing and Ordering Fractions Worksheet |Ascending/Descending Order

January 21, 2026
Math

Two New Wolfram Book Series to Advance Computational Work—Wolfram Blog

January 19, 2026
Math

What Is Ruliology?—Stephen Wolfram Writings

January 18, 2026
Math

Addition and Subtraction of Fractions | Solved Examples

January 17, 2026
Math

Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

January 11, 2026
Math

Polynomial towers and inverse Gowers theory for bounded-exponent groups

January 10, 2026
Add A Comment
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202555 Views

Improve your speech with immersive lessons!

May 28, 202553 Views

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 202550 Views

What Helps Nerve Pain in Legs After Back Surgery?

October 13, 202548 Views
Don't Miss

AIFS Abroad Student Spotlight: Molly’s Fall Semester in Prague

By adminJanuary 22, 20260

29 Eager to step into the footsteps of a college student who studied abroad in…

Top 10 Abroad Education Consultants in Hyderabad

January 19, 2026

AIFS Abroad Student Spotlight: Valeria’s Summer in Madrid, Spain 

January 18, 2026

Best Abroad Education Consultants for UK in Hyderabad

January 12, 2026
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

February Lesson Plans for Special Education

January 22, 2026

Designing the 2026 Classroom: Emerging Learning Trends in an AI-Powered Education System – Faculty Focus

January 22, 2026

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.