Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Learning Styles In L&D: Time To Retire The Myth

July 17, 2025

Everything We Know About Interstellar Comet 3I/ATLAS : ScienceAlert

July 17, 2025

Nestedly Recursive Functions—Stephen Wolfram Writings

July 17, 2025
Facebook X (Twitter) Instagram
Friday, July 18
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Rational design of direct and indirect electron transfer pathways to engineer efficient electroactive Escherichia coli for green bioelectrochemical system applications
Chemistry

Rational design of direct and indirect electron transfer pathways to engineer efficient electroactive Escherichia coli for green bioelectrochemical system applications

adminBy adminJuly 11, 2025No Comments2 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Rational design of direct and indirect electron transfer pathways to engineer efficient electroactive Escherichia coli for green bioelectrochemical system applications
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Bioelectrochemical systems (BESs) span environmentally friendly applications including bioelectricity generation, bioremediation, biosensing, electrosynthesis, etc. Engineering an efficient electroactive Escherichia coli to leverage its enormous synthetic biology toolkit opens up the boundless potential for BES. After the initial screening, we first designed and constructed electroactive E. coli with multiple electron transfer pathways, which combined the direct Mtr pathway from Shewanella oneidensis MR-1 and the indirect phenazine-1-carboxylate (PCA) pathway from Pseudomonas aeruginosa PAO1. The dual pathways exhibited excellent electron transfer performance and complementarity. Subsequently, electron transfer efficiency was improved from the perspective of transmembrane electron transfer and the cell–electrode interface by coordinating the Mtr and PCA pathways and enhancing the biofilm formation ability. Meanwhile, molecular dynamics simulations and dissociation constant analyses revealed an interaction of PCA and the outer membrane cytochrome MtrC in the Mtr pathway. Finally, the engineered electroactive E. coli was applied in BES, where its current density in microbial fuel cells increased to 1994.9 mA m−2, and the inward current reached 120.4 μA cm−2. The bidirectional electron transfer capability was better than that of natural wild-type electroactive microbes, such as P. aeruginosa and S. oneidensis. In addition, the engineered electroactive E. coli promoted the fixation of CO2 in a microbial electrosynthesis system of succinate production. Furthermore, upon introducing a thiosulfate response module into the electroactive E. coli, the biosensor achieved real-time monitoring of thiosulfate. This work provides valuable reference points for the rational design and integration of different EET pathways in non-electroactive microorganisms to endow them with efficient electroactivity and also offers a possible and effective chassis cell for exploring bioelectrochemical processes and opening up further opportunities in BESs.

Graphical abstract: Rational design of direct and indirect electron transfer pathways to engineer efficient electroactive Escherichia coli for green bioelectrochemical system applications


You have access to this article



Please wait while we load your content…


Something went wrong. Try again?



Source link

applications bioelectrochemical coli Design direct Efficient electroactive electron Engineer Escherichia green indirect pathways Rational System transfer
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
yhhifa9
admin
  • Website

Related Posts

Chemistry

Effect of halogen substitution on the electronic and optical behavior of C₁₆H₁₀X₂O₂(X = F, cl, Br and I) organic semiconductors

July 17, 2025
Chemistry

Researchers develop high-entropy ceramic for high-temperature sensors

July 16, 2025
Biology

Puerperium: physiological changes in reproductive system and other systems of the body after child birth

July 16, 2025
Chemistry

Chemistry, Public Health, and You

July 15, 2025
Chemistry

Leveraging Artificial Intelligence for Enhanced Detection and Mitigation of Illicit Activities on the Dark Web

July 14, 2025
Chemistry

The furnaces that forge iron and steel

July 13, 2025
Add A Comment
Leave A Reply Cancel Reply

Top Posts

What Is The Easiest Language To Learn? Your Guide And Quiz

June 30, 20255 Views

10 Student Engagement Strategies That Empower Learners –

May 28, 20253 Views

Do You Hear What I Hear? Audio Illusions and Misinformation

May 28, 20253 Views

Improve your speech with immersive lessons!

May 28, 20252 Views
Don't Miss

Am I Able to Study Abroad as an Underclassman? 

By adminJuly 14, 20251

64 Studying abroad is the perfect way to earn credits towards your degree while you…

Wednesday’s Spring Semester in Florence

July 10, 2025

Building a Life Abroad | Study in Ireland

July 9, 2025

Literary Afro Futures – Global Studies Blog

July 7, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

Learning Styles In L&D: Time To Retire The Myth

July 17, 2025

Everything We Know About Interstellar Comet 3I/ATLAS : ScienceAlert

July 17, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.