Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 2025

What Helps Nerve Pain in Legs After Back Surgery?

October 13, 2025

The Importance of Connection in the Age of AI – Faculty Focus

October 13, 2025
Facebook X (Twitter) Instagram
Tuesday, October 14
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Rational design of direct and indirect electron transfer pathways to engineer efficient electroactive Escherichia coli for green bioelectrochemical system applications
Chemistry

Rational design of direct and indirect electron transfer pathways to engineer efficient electroactive Escherichia coli for green bioelectrochemical system applications

adminBy adminJuly 11, 2025No Comments2 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Rational design of direct and indirect electron transfer pathways to engineer efficient electroactive Escherichia coli for green bioelectrochemical system applications
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Bioelectrochemical systems (BESs) span environmentally friendly applications including bioelectricity generation, bioremediation, biosensing, electrosynthesis, etc. Engineering an efficient electroactive Escherichia coli to leverage its enormous synthetic biology toolkit opens up the boundless potential for BES. After the initial screening, we first designed and constructed electroactive E. coli with multiple electron transfer pathways, which combined the direct Mtr pathway from Shewanella oneidensis MR-1 and the indirect phenazine-1-carboxylate (PCA) pathway from Pseudomonas aeruginosa PAO1. The dual pathways exhibited excellent electron transfer performance and complementarity. Subsequently, electron transfer efficiency was improved from the perspective of transmembrane electron transfer and the cell–electrode interface by coordinating the Mtr and PCA pathways and enhancing the biofilm formation ability. Meanwhile, molecular dynamics simulations and dissociation constant analyses revealed an interaction of PCA and the outer membrane cytochrome MtrC in the Mtr pathway. Finally, the engineered electroactive E. coli was applied in BES, where its current density in microbial fuel cells increased to 1994.9 mA m−2, and the inward current reached 120.4 μA cm−2. The bidirectional electron transfer capability was better than that of natural wild-type electroactive microbes, such as P. aeruginosa and S. oneidensis. In addition, the engineered electroactive E. coli promoted the fixation of CO2 in a microbial electrosynthesis system of succinate production. Furthermore, upon introducing a thiosulfate response module into the electroactive E. coli, the biosensor achieved real-time monitoring of thiosulfate. This work provides valuable reference points for the rational design and integration of different EET pathways in non-electroactive microorganisms to endow them with efficient electroactivity and also offers a possible and effective chassis cell for exploring bioelectrochemical processes and opening up further opportunities in BESs.

Graphical abstract: Rational design of direct and indirect electron transfer pathways to engineer efficient electroactive Escherichia coli for green bioelectrochemical system applications


You have access to this article



Please wait while we load your content…


Something went wrong. Try again?



Source link

applications bioelectrochemical coli Design direct Efficient electroactive electron Engineer Escherichia green indirect pathways Rational System transfer
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Chemistry

Biochar’s secret power could change clean water forever

October 12, 2025
Science

Which planets are the youngest and oldest in our solar system?

October 12, 2025
Chemistry

A high-κ homogeneous ink for printable electroluminescent devices

October 11, 2025
Chemistry

An Australian chemist just won the Nobel Prize. Here’s how his work is changing the world

October 10, 2025
Chemistry

Sulfur in the Spotlight: Organosulfur Compounds

October 9, 2025
Education

Retain Top Talent With Stronger Career Development Pathways

October 8, 2025
Add A Comment
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Improve your speech with immersive lessons!

May 28, 202529 Views

Hannah’s Spring Semester in Cannes

May 28, 202529 Views

2024 in math puzzles. – Math with Bad Drawings

July 22, 202528 Views

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202527 Views
Don't Miss

Ally’s January Term in Rome, Italy 

By adminOctober 13, 20252

71 Eager to follow in the footsteps of a college student who studied abroad in…

Maya’s Summer Internship in London

October 9, 2025

Meet College Students Who Studied Abroad in Costa Rica

October 5, 2025

Best Fall Foliage Around the World

October 1, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 2025

What Helps Nerve Pain in Legs After Back Surgery?

October 13, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.