Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Sharing My Centers Lesson Plans

November 3, 2025

Education Department ordered to reinstate mental health grants

November 3, 2025

Embracing Diversity, Collaboration, and Inclusion For Edtech Success

November 3, 2025
Facebook X (Twitter) Instagram
Monday, November 3
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Polymeric stabilization at the gas–liquid interface for durable solar hydrogen production from plastic waste
Chemistry

Polymeric stabilization at the gas–liquid interface for durable solar hydrogen production from plastic waste

adminBy adminJune 11, 2025No Comments8 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Polymeric stabilization at the gas–liquid interface for durable solar hydrogen production from plastic waste
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018).

    Article 
    CAS 

    Google Scholar
     

  • She, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article 

    Google Scholar
     

  • Zhou, P. et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, B. et al. Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires. Nat. Catal. 6, 987–995 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. et al. Asymmetric chloride-mediated electrochemical process for CO2 removal from oceanwater. Energy Environ. Sci. 16, 2030–2044 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021).

    Article 

    Google Scholar
     

  • Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cargnello, M., Gordon, T. R. & Murray, C. B. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem. Rev. 114, 9319–9345 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gewirth, A. A., Varnell, J. A. & Diascro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 118, 2313–2339 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, A., Dick, G. R., Yoshino, T. & Kanan, M. W. Carbon dioxide utilization via carbonate-promoted C–H carboxylation. Nature 531, 215–219 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, W. et al. Steam-created grain boundaries for methane C–H activation in palladium catalysts. Science 373, 1518–1523 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kowal, A. et al. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 8, 325–330 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, F. et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 33, 1–38 (2021).

    Article 

    Google Scholar
     

  • Tan, J. et al. Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nat. Energy 7, 537–547 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q., Pornrungroj, C., Linley, S. & Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022).

    Article 

    Google Scholar
     

  • Xu, C., Tang, Q., Tu, W. & Wang, L. Photon and phonon powered photothermal catalysis. Energy Environ. Sci. 17, 4461–4480 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting. Nat. Catal. 7, 77–88 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Uekert, T., Kuehnel, M. F., Wakerley, D. W. & Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 11, 2853–2857 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zang, J. et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Povia, M. et al. Operando X-ray characterization of high surface area iridium oxides to decouple their activity losses for the oxygen evolution reaction. Energy Environ. Sci. 12, 3038–3052 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kao, J., Thorkelsson, K., Bai, P., Rancatore, B. J. & Xu, T. Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chem. Soc. Rev. 42, 2654–2678 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vargo, E. et al. Functional composites by programming entropy-driven nanosheet growth. Nature 623, 724–731 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lang, X., Chen, X. & Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43, 473–486 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 12, 764–772 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 11, 3375–3379 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paxson, A. T., Yagüe, J. L., Gleason, K. K. & Varanasi, K. K. Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films. Adv. Mater. 26, 418–423 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, X. et al. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nat. Mater. 18, 1350–1357 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrero, E., Buller, L. J. & Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dash, S., de Ruiter, J. & Varanasi, K. K. Photothermal trap utilizing solar illumination for ice mitigation. Sci. Adv. 4, 1–7 (2018).

    Article 

    Google Scholar
     

  • Tang, Y., Zhang, Y., Li, W., Ma, B. & Chen, X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925–931 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466, 474–477 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Moniz, S. J. A., Shevlin, S. A., Martin, D. J., Guo, Z. X. & Tang, J. Visible-light driven heterojunction photocatalysts for water splitting-a critical review. Energy Environ. Sci. 8, 731–759 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, C. H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y., Liu, J., Liang, J., Jaroniec, M. & Qiao, S. Z. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5, 6717–6731 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ran, J., Ma, T. Y., Gao, G., Du, X. W. & Qiao, S. Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W. et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat. Mater. 22, 737–745 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y. et al. Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater. 34, 2201178 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. W. et al. Photochemical tuning of dynamic defects for high-performance atomically dispersed catalysts. Nat. Mater. 23, 552–559 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, W. H. et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat. Nanotechnol. 18, 754–762 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, W. H. et al. Highly efficient nitrogen-fixing microbial hydrogel device for sustainable solar hydrogen production. Adv. Mater. 35, 2306092 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X. & Jin, H. Investigation of hydrogen diffusion in supercritical water: a molecular dynamics simulation study. Int. J. Heat. Mass Transf. 133, 718–728 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Matsunaga, N., Hori, M. & Nagashima, A. Measurement of mutual diffusion coefficients of gases by the Taylor method: measurements on H2–air, H2–N2, and H2–O2 systems. Heat. Transf. Asian Res. 31, 182–193 (2002).

    Article 

    Google Scholar
     



  • Source link

    Devices for energy harvesting durable gasliquid General hydrogen Interface Materials Science Nanocomposites Nanotechnology Nanotechnology and Microengineering Photocatalysis plastic Polymeric production Solar stabilization Waste
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
    thanhphuchoang09
    admin
    • Website

    Related Posts

    Chemistry

    This artificial leaf turns pollution into power

    November 3, 2025
    Chemistry

    Metal-organic framework (Pd-DTPA-MOF)-based materials as heterogeneous catalysts for C–S cross-coupling reactions

    November 2, 2025
    Chemistry

    Advanced imaging reveals how electrocatalysts simultaneously generate hydrogen and organic compounds

    November 1, 2025
    Chemistry

    Lithium-Ion Batteries | ChemTalk

    October 31, 2025
    Chemistry

    Welcome to Communications AI & Computing!

    October 30, 2025
    Chemistry

    Strange spice science – in C&EN

    October 29, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Top Posts

    Improve your speech with immersive lessons!

    May 28, 202531 Views

    Hannah’s Spring Semester in Cannes

    May 28, 202531 Views

    Announcing the All-New EdTechTeacher Summer Learning Pass!

    May 31, 202530 Views

    2024 in math puzzles. – Math with Bad Drawings

    July 22, 202529 Views
    Don't Miss

    Meet 3 Who People Did an Internship in New York City 

    By adminNovember 2, 20250

    51 With booming marketing, finance, fashion, graphic design, and non-profit industries (to name just a…

    Can I Study Abroad Multiple Times?

    October 29, 2025

    Ashley’s Summer Abroad in Costa Rica

    October 25, 2025

    Annaliese’s Two Semesters Abroad in Berlin & Grenoble 

    October 18, 2025
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us
    About Us

    Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

    Our Picks

    Sharing My Centers Lesson Plans

    November 3, 2025

    Education Department ordered to reinstate mental health grants

    November 3, 2025

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    Copyright© 2025 Bkngpnarnaul All Rights Reserved.
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.