Mehmood, R. A. et al. A review on hydrogen production using decorated metal-organic frameworks by electrocatalytic and photocatalytic water splitting. Fuel 387, 134416 (2025).
Lakhera, S. K., Kangeyan, K. P. & Bernaurdshaw, N. Advances in hybrid strategies for enhanced photocatalytic water splitting: bridging conventional and emerging methods. Appl. Phys. Rev. 11, 041305 (2024).
Etezadi, R., Wang, R. & Tsotsis, T. T. Hydrogen, a versatile chemical for the future: applications and production methods. AIChE J. 71, e18645 (2025).
Li, M., Wang, J.-Z. & Jin, Z.-L. Graphdiyne (CnH2n-2) as an “electron transfer bridge” boosting photocatalytic hydrogen evolution over Zn0.5Co0.5S/MoS2 S-scheme heterojunction. Rare Met. 43, 1999–2014 (2024).
Ahmad, M. et al. Design and architecture of ZnIn2S4 and ZnIn2S4 -based hybrid materials for photocatalytic, electrocatalytic and photoelectrochemical hydrogen evolution. J. Mater. Chem. A 13, 6223–6273 (2025).
Wu, X., Chen, G., Li, L., Wang, J. & Wang, G. ZnIn2S4-based S-scheme heterojunction photocatalyst. J. Mater. Sci. Technol. 167, 184–204 (2023).
Yang, M. et al. Efficient visible-light-driven hydrogen production with Ag-doped flower-like ZnIn2S4 microspheres. Rare Met. 44, 1024–1041 (2025).
Yang, W.-N. et al. In-situ construction of tubular core–shell noble-metal-free CMT@TiO2/ZnIn2S4 S-scheme heterojunction for superior photothermal-photocatalytic hydrogen evolution. Rare Met. 44, 2474–2488 (2025).
Wang, W. et al. Z-type ZnIn2S4 homojunction for high performance photocatalytic hydrogen evolution. Chem. Eng. J. 507, 160370 (2025).
Li, S. et al. CoP co-catalyst modification ZnIn2S4 driving efficient H2 evolution under visible light. Sep. Purif. Technol. 358, 130294 (2025).
Li, W. et al. Fast charge transfer kinetics in Sv-ZnIn2S4/Sb2S3 S-scheme heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution. Rare Met. 43, 533–542 (2024).
Kubacka, A., Fernández-García, M. & Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555–1614 (2012).
Wu, C., Lv, K., Li, X. & Li, Q. Dual cocatalysts for photocatalytic hydrogen evolution: categories, synthesis, and design considerations. Chin. J. Catal. 54, 137–160 (2023).
Liu, S., Han, Q. & Liu, X. Facile preparation of Co-doped ZnIn2S4 nanosheets for highly efficient photocatalytic hydrogen peroxide production. J. Alloy. Compd. 1009, 176965 (2024).
Xin, X. et al. Large electronegativity differences between adjacent atomic sites activate and stabilize ZnIn2S4 for efficient photocatalytic overall water splitting. Nat. Commun. 15, 337 (2024).
Huang, Y. et al. Facile defect engineering in ZnIn2S4 nanosheets for enhanced NIR-driven H2 evolution. Sci. China Mater. 67, 1812–1819 (2024).
Liu, H.-Y. et al. Synergy between sulfur vacancy and Schottky junction into CoB/ZnIn2S4–S photocatalysts: oriented charge flow and regulated carriers transfer dynamics to activate reactive oxygen species generation for efficient photocatalytic disinfection. J. Clean. Prod. 387, 135742 (2023).
Li, Y. et al. Integrating a homojunction and a heterojunction to construct direct charge transport channel in ZnIn₂S₄ nanosheet arrays for boosting photoelectrochemical hydrogen evolution. Colloids Surf. Physicochem. Eng. Asp. 705, 135646 (2025).
Li, Y. et al. In-situ construction of 3D/2D ZnIn2S4/Ni-MOLs: highly efficient visible-light-driven photocatalytic heterojunction in hydrogen evolution. Appl. Catal. B Environ. Energy 361, 124657 (2025).
Yan, B., Shi, H., Li, H., Liu, D. & Yang, G. Nickel thiocarbonate cocatalyst promoting ZnIn2S4 photocatalytic hydrogen evolution via built-in electric field. Langmuir 41, 4233–4239 (2025).
Yu, Q. et al. Zinc mediated electronic structure of CoP toward photocatalytic H2 evolution. Appl. Catal. B Environ. Energy 367, 125098 (2025).
Chen, R. et al. Facile photodeposition Ni(OH)2 anchored ZnIn2S4 as an efficient 1D/2D heterojunctions for photocatalytic H2 evolution. J. Am. Ceram. Soc. 107, 5201–5211 (2024).
Wu, Y., Tan, T., Song, C. & Liu, X. Facile hydrothermal synthesis of melamine-based polymers for photocatalytic hydrogen evolution. J. Saudi Chem. Soc. 28, 101955 (2024).
Yang, C., Zhao, Z. & Liu, Q. Regulating effect on photocatalytic water splitting performance of g-C3N4 via confinement of single atom Pt based on energy band engineering: a first principles investigation. Appl. Surf. Sci. 577, 151916 (2022).
Li, X. et al. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28, 2427–2431 (2016).
Krishnan, A. et al. Ni-based electro/photo-catalysts in HER—a review. Surf. Interfaces 36, 102619 (2023).
Zhang, Z. et al. In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution. Appl. Catal. B Environ. 233, 112–119 (2018).
Wen, H. et al. Directing charge transfer in a chemical-bonded Ni/Cd0.7Mn0.3S Schottky heterojunction for selective photocatalytic oxidation of benzyl alcohol structural organic platform molecules coupled with hydrogen evolution reaction. Appl. Catal. B Environ. 345, 123641 (2024).
Zhang, H. et al. Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl. Catal. B Environ. 261, 118233 (2020).
Du, R. et al. NiS/Cd0.6 Zn0.4 S Schottky Junction Bifunctional Photocatalyst for Sunlight-Driven Highly Selective Catalytic Oxidation of Vanillyl Alcohol Towards Vanillin Coupled with Hydrogen Evolution Reaction. Small 19, 2302330 (2023).
Shen, L. et al. α-NiS–β-NiS growth on Cd0.5Zn0.5S formed Schottky heterojunctions for enhanced photocatalytic hydrogen production. New J. Chem. 46, 17469–17478 (2022).
Mao, C. et al. Nickel phosphide cocatalyst and carbon defects simultaneously boosting the photocatalytic hydrogen production over carbon nitride. J. Environ. Chem. Eng. 12, 112271 (2024).
Liu, Y. et al. Charge storage of carbon dot enhances photo-production of H2 and H2O2 over Ni2P/carbon dot catalyst under normal pressure. Chem. Eng. J. 409, 128184 (2021).
Xu, J. et al. In situ anchoring of Ni12P5 on ZnIn2S4 for efficient and stable photocatalytic H2 evolution. Fuel 368, 131624 (2024).
Páll, B. et al. Photocatalytic H2 production by visible light on Cd0.5Zn0.5S photocatalysts modified with Ni(OH)2 by impregnation method. Int. J. Mol. Sci. 24, 9802 (2023).
Vamvasakis, I. et al. Visible-light photocatalytic H2 production activity of β-Ni(OH)2-modified CdS mesoporous nanoheterojunction networks. ACS Catal. 8, 8726–8738 (2018).
Yan, J. et al. One-pot hydrothermal fabrication of layered -Ni(OH)2/g-C3N4 nanohybrids for enhanced photocatalytic water splitting. Appl. Catal. B Environ. 194, 74–83 (2016).
Chen, J. et al. Ternary heterojunction ZnS-ZnIn2S4-In2S3 efficiently catalyzes triethylamine to enhance electrochemiluminescence imaging signals. Adv. Funct. Mater. 35, 2420714 (2025).
Yang, J. et al. Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J. Catal. 290, 151–157 (2012).
Shahzad, A. et al. Escalating the synergism on CdZnS via Ag2S/Cu2S co-catalysts: boosts hydrogen evolution from water splitting under sunlight. J. Catal. 429, 115210 (2024).
Song, T. et al. An efficient NiS-ReS2/CdS nanoparticles with dual cocatalysts for photocatalytic hydrogen production. Int. J. Hydrog. Energy 79, 876–882 (2024).
He, B. et al. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Appl. Catal. B Environ. 288, 119994 (2021).
Wu, F. et al. Electronic structure engineering of asymmetric coupled dual-cocatalysts on carbon nitride for synergistically enhancing photocatalytic H2 evolution. Chem. Eng. J. 498, 155152 (2024).
Gu, C. et al. Modular divergent creation of dual-cocatalysts integrated semiconducting sulfide nanotriads for enhanced photocatalytic hydrogen evolution. Nano Res. 16, 7967–7973 (2023).
Gai, Q. et al. Controllable photodeposition of nickel phosphide cocatalysts on cadmium sulfide nanosheets for enhanced photocatalytic hydrogen evolution performance. New J. Chem. 44, 4332–4339 (2020).
Lu, K.-Q., Qi, M.-Y., Tang, Z.-R. & Xu, Y.-J. Earth-abundant MoS2 and cobalt phosphate dual cocatalysts on 1D CdS nanowires for boosting photocatalytic hydrogen production. Langmuir 35, 11056–11065 (2019).
Tuck, D. G. Critical survey of stability constants of complexes of indium. Pure Appl. Chem. 55, 1477–1528 (1983).
Peng, S., Dan, M., Guo, F., Wang, H. & Li, Y. Template synthesis of ZnIn2S4 for enhanced photocatalytic H2 evolution using triethanolamine as electron donor. Colloids Surf. Physicochem. Eng. Asp. 504, 18–25 (2016).
Dong, Y. et al. Photochemical synthesis of CoxP as cocatalyst for boosting photocatalytic H2 production via spatial charge separation. Appl. Catal. B Environ. 211, 245–251 (2017).
Hu, L., Liu, X., Dai, R., Lai, H. & Li, J. Enhancing photocatalytic H2 evolution of Cd0.5Zn0.5S with the synergism of amorphous CoS cocatalysts and surface S2− adsorption. Fuel 382, 133737 (2025).
Li, Y., Hou, Y., Fu, Q., Peng, S. & Hu, Y. H. Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Appl. Catal. B Environ. 206, 726–733 (2017).
Raza, A. H., Li, L., Farhan, S., Fu, W. & Wu, Y. Enhancing built-in electric field via ZnIn2S4 nanosheet decorated with ZnS quantum dots photocatalyst for highly efficient hydrogen evolution. J. Colloid Interface Sci. 689, 137189 (2025).
Hao, X., Xiang, D. & Jin, Z. Zn-vacancy engineered S-scheme ZnCdS/ZnS photocatalyst for highly efficient photocatalytic H2 evolution. ChemCatChem 13, 4738–4750 (2021).
Xie, L. Construction of a Z-scheme CdIn2S4/ZnS heterojunction for the enhanced photocatalytic hydrogen evolution. J. Alloy. Compd. 948, 169692 (2023).
Peng, S., Yang, Y., Tan, J., Gan, C. & Li, Y. In situ loading of Ni2P on Cd0.5Zn0.5S with red phosphorus for enhanced visible light photocatalytic H2 evolution. Appl. Surf. Sci. 447, 822–828 (2018).
Yu, K. et al. Anchoring Co3O4 on CdZnS to accelerate hole migration for highly stable photocatalytic overall water splitting. Appl. Catal. B Environ. 324, 122228 (2023).
Li, W. et al. Localized photothermal effect mediated hollow S-scheme NiCo2O4@ZnIn2S4 for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. Energy 365, 124971 (2025).
Lim, S. Y. et al. Chemically deposited amorphous Zn-doped NiFeOxHy for enhanced water oxidation. ACS Catal. 10, 235–244 (2020).
Zhang, R. et al. Electrodeposited zinc cobalt bimetallic phosphate as a bifunctional catalyst for hydrogen evolution and urea oxidation. J. Alloy. Compd. 1009, 176818 (2024).
Zhang, J., Cheng, C., Xing, F., Chen, C. & Huang, C. 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production. Chem. Eng. J. 414, 129157 (2021).
Cao, S., Chen, Y., Wang, C.-J., He, P. & Fu, W.-F. Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chem. Commun. 50, 10427 (2014).
Dai, L. et al. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv. Mater. 32, 1906915 (2020).
Guo, X. et al. Direct ammonia and dihydroxyacetone production in an unbiased photoelectrochemical cell. Nat. Commun. 16, 6220 (2025).
Ren, S., Gao, R., Nguyen, N. T. & Wang, L. Enhanced charge carrier dynamics on Sb2Se3 photocathodes for efficient photoelectrochemical nitrate reduction to ammonia. Angew. Chem. Int. Ed. 63, e202317414 (2024).
