Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

5 Reasons To Subscribe to Tech & Learning

January 8, 2026

Best UK Study Abroad Consultancy in Ameerpet

January 8, 2026

Retrieval Practice Examples: 5 Tools Teachers Can Use

January 8, 2026
Facebook X (Twitter) Instagram
Thursday, January 8
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Nanocluster intermediates orchestrate the phase transition of ATP condensates
Chemistry

Nanocluster intermediates orchestrate the phase transition of ATP condensates

adminBy adminNovember 24, 2025No Comments9 Mins Read2 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Nanocluster intermediates orchestrate the phase transition of ATP condensates
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).


    Google Scholar
     

  • Wang, J. et al. A Molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e616 (2018).


    Google Scholar
     

  • Li, Y. et al. Membraneless organelles in health and disease: exploring the molecular basis, physiological roles and pathological implications. Signal Transduct. Target. Ther. 9, 305 (2024).


    Google Scholar
     

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).


    Google Scholar
     

  • Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat. Commun. 14, 5527 (2023).


    Google Scholar
     

  • Ambadi Thody, S. et al. Small-molecule properties define partitioning into biomolecular condensates. Nat. Chem. 16, 1794–1802 (2024).


    Google Scholar
     

  • Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science 367, 464–468 (2020).


    Google Scholar
     

  • Snead, W. T. & Gladfelter, A. S. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol. Cell 76, 295–305 (2019).


    Google Scholar
     

  • Zhao, Y. G. & Zhang, H. Phase separation in membrane biology: the interplay between membrane-bound organelles and membraneless condensates. Dev. Cell 55, 30–44 (2020).


    Google Scholar
     

  • Omiatek, D. M. et al. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci. Rep. 3, 1447 (2013).


    Google Scholar
     

  • Estevez-Herrera, J. et al. ATP: The crucial component of secretory vesicles. Proc. Natl Acad. Sci. USA. 113, E4098–E4106 (2016).


    Google Scholar
     

  • Sleutel, M. & Van Driessche, A. E. Role of clusters in nonclassical nucleation and growth of protein crystals. Proc. Natl Acad. Sci. USA. 111, E546–E553 (2014).


    Google Scholar
     

  • Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).


    Google Scholar
     

  • Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. Engl. 56, 11354–11359 (2017).


    Google Scholar
     

  • Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).


    Google Scholar
     

  • Portz, B. & Shorter, J. Biochemical timekeeping via reentrant phase transitions. J. Mol. Biol. 433, 166794 (2021).


    Google Scholar
     

  • Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225 e224 (2021).


    Google Scholar
     

  • Chawla, R. et al. Reentrant DNA shells tune polyphosphate condensate size. Nat. Commun. 15, 9258 (2024).


    Google Scholar
     

  • Wadsworth, G. M. et al. RNA-driven phase transitions in biomolecular condensates. Mol. Cell 84, 3692–3705 (2024).


    Google Scholar
     

  • Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).


    Google Scholar
     

  • Martin, E. W. et al. A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nat. Commun. 12, 4513 (2021).


    Google Scholar
     

  • Chatterjee, S. et al. Reversible kinetic trapping of FUS biomolecular condensates. Adv. Sci. 9, e2104247 (2022).


    Google Scholar
     

  • Carducci, F., Yoneda, J. S., Itri, R. & Mariani, P. On the structural stability of guanosine-based supramolecular hydrogels. Soft Matter 14, 2938–2948 (2018).


    Google Scholar
     

  • Tang, Y. M. et al. Prediction and characterization of liquid-liquid phase separation of minimalistic peptides. Cell Rep. Phys. Sci. 2, 100579 (2021).


    Google Scholar
     

  • Bai, Q., Zhang, Q., Jing, H., Chen, J. & Liang, D. Liquid-Liquid Phase Separation of Peptide/Oligonucleotide Complexes in Crowded Macromolecular Media. J. Phys. Chem. B 125, 49–57 (2021).


    Google Scholar
     

  • Yuan, C. Q., Li, Q., Xing, R. R., Li, J. B. & Yan, X. H. Peptide self-assembly through liquid-liquid phase separation. Chem 9, 2425–2445 (2023).


    Google Scholar
     

  • Meyers, K. M., Holmsen, H. & Seachord, C. L. Comparative-study of platelet dense granule constituents. Am. J. Physiol. 243, R454–R461 (1982).


    Google Scholar
     

  • Hiasa, M. et al. Essential role of vesicular nucleotide transporter in vesicular storage and release of nucleotides in platelets. Physiol. Rep. 2, e12034 (2014).


    Google Scholar
     

  • Pokrovskaya, I. D. et al. 3D ultrastructural analysis of alpha-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets. Res. Pract. Thromb. Haemost. 4, 72–85 (2020).


    Google Scholar
     

  • Ugurbil, K., Fukami, M. H. & Holmsen, H. P-31 NMR-studies of nucleotide storage in the dense granules of pig platelets. Biochemistry 23, 409–416 (1984).


    Google Scholar
     

  • Takaya, K., Niiya, K., Toyoda, M. & Masuda, T. High magnesium concentrations in the dense bodies of human blood platelets from patients with atopic dermatitis and chronic myelogenous leukemia. Med. Electron Microsc. 27, 330–332 (1994).


    Google Scholar
     

  • Berneis, K. H., Pletscher, A. & Daprada, M. Phase separation in solutions of noradrenaline and adenosine triphosphate – influence of bivalent cations and drugs. Br. J. Pharmacol. 39, 382–389 (1970).


    Google Scholar
     

  • Hubley, M. J., Locke, B. R. & Moerland, T. S. The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. Biochim. Biophys. Acta 1291, 115–121 (1996).


    Google Scholar
     

  • Sigel, H. & Griesser, R. Nucleoside 5’-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Chem. Soc. Rev. 34, 875–900 (2005).


    Google Scholar
     

  • Fawzi, N. L., Ying, J., Ghirlando, R., Torchia, D. A. & Clore, G. M. Atomic-resolution dynamics on the surface of amyloid-beta protofibrils probed by solution NMR. Nature 480, 268–272 (2011).


    Google Scholar
     

  • Fawzi, N. L., Ying, J., Torchia, D. A. & Clore, G. M. Probing exchange kinetics and atomic resolution dynamics in high-molecular-weight complexes using dark-state exchange saturation transfer NMR spectroscopy. Nat. Prot. 7, 1523–1533 (2012).


    Google Scholar
     

  • Egner, T. K., Naik, P., Nelson, N. C., Slowing, I. I. & Venditti, V. Mechanistic insight into nanoparticle surface adsorption by solution nmr spectroscopy in an aqueous gel. Angew. Chem. Int. Ed. Engl. 56, 9802–9806 (2017).


    Google Scholar
     

  • Kamagata, K. et al. Molecular principles of recruitment and dynamics of guest proteins in liquid droplets. Sci. Rep. 11, 19323 (2021).


    Google Scholar
     

  • Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).


    Google Scholar
     

  • Ma, Y. et al. Nucleobase Clustering contributes to the formation and hollowing of repeat-expansion RNA condensate. J. Am. Chem. Soc. 144, 4716–4720 (2022).


    Google Scholar
     

  • Majumder, S., Coupe, S., Fakhri, N. & Jain, A. Sequence-encoded intermolecular base pairing modulates fluidity in DNA and RNA condensates. Nat. Commun. 16, 4258 (2025).


    Google Scholar
     

  • Collins, K. D. Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization. Biophys. Chem. 119, 271–281 (2006).


    Google Scholar
     

  • Stern, N. et al. Studies of Mg2+/Ca2+ complexes of naturally occurring dinucleotides: potentiometric titrations, NMR, and molecular dynamics. J. Biol. Inorg. Chem. 17, 861–879 (2012).


    Google Scholar
     

  • Gliko, O. et al. Metastable liquid clusters in super- and undersaturated protein solutions. J. Phys. Chem. B 111, 3106–3114 (2007).


    Google Scholar
     

  • Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753–756 (2017).


    Google Scholar
     

  • Mehringer, J. et al. Hofmeister versus Neuberg: is ATP really a biological hydrotrope?. Cell Rep. Phys. Sci. 2, 100343 (2021).


    Google Scholar
     

  • Zhu, Y. et al. ATP promotes protein coacervation through conformational compaction. J. Mol. Cell. Biol. 16, mjae038 (2025).


    Google Scholar
     

  • Dinsmore, A., Dubin, P. & Grason, G. Clustering in complex fluids. J. Phys. Chem. B 115, 7173–7174 (2011).


    Google Scholar
     

  • Wang, X. et al. An inorganic biopolymer polyphosphate controls positively charged protein phase transitions. Angew. Chem. Int. Ed. Engl. 59, 2679–2683 (2020).


    Google Scholar
     

  • Ge, S., White, J. G. & Haynes, C. L. Quantal release of serotonin from platelets. Anal. Chem. 81, 2935–2943 (2009).


    Google Scholar
     

  • Ge, S., Woo, E., White, J. G. & Haynes, C. L. Electrochemical measurement of endogenous serotonin release from human blood platelets. Anal. Chem. 83, 2598–2604 (2011).


    Google Scholar
     

  • Kang, M., Day, C. A., Drake, K., Kenworthy, A. K. & DiBenedetto, E. A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes. Biophys. J. 97, 1501–1511 (2009).


    Google Scholar
     

  • Loren, N. et al. Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Q. Rev. Biophys. 48, 323–387 (2015).


    Google Scholar
     

  • Dalvit, C., Fogliatto, G., Stewart, A., Veronesi, M. & Stockman, B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J. Biomol. NMR 21, 349–359 (2001).


    Google Scholar
     

  • Melacini, G., Kaptein, R. & Boelens, R. Editing of chemical exchange-relayed NOEs in NMR experiments for the observation of protein-water interactions. J. Magn. Reson. 136, 214–218 (1999).


    Google Scholar
     

  • Wu, D. H., Chen, A. D. & Johnson, C. S. An Improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson., Ser. A 115, 260–264 (1995).


    Google Scholar
     

  • Vallurupalli, P., Bouvignies, G. & Kay, L. E. Studying “invisible” excited protein states in slow exchange with a major state conformation. J. Am. Chem. Soc. 134, 8148–8161 (2012).


    Google Scholar
     

  • Singh, M. & Sharma, Y. K. Applications of activation energy and transition state theory for nucleos(t)ides and furanose helix puckering interactions in aqueous medium from 288.15 to 298.15. K. Phys. Chem. Liq. 44, 1–14 (2006).


    Google Scholar
     

  • Meagher, K. L., Redman, L. T. & Carlson, H. A. Development of polyphosphate parameters for use with the AMBER force field. J. Comput. Chem. 24, 1016–1025 (2003).


    Google Scholar
     

  • Shabane, P. S., Izadi, S. & Onufriev, A. V. General purpose water model can improve atomistic simulations of intrinsically disordered proteins. J. Chem. Theory Comput. 15, 2620–2634 (2019).


    Google Scholar
     

  • Mori, T. & Yoshida, N. Tuning the ATP-ATP and ATP-disordered protein interactions in high ATP concentration by altering water models. J. Chem. Phys. 159, 035102 (2023).


    Google Scholar
     

  • Li, P., Song, L. F. & Merz, K. M. Jr Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. J. Chem. Theory Comput. 11, 1645–1657 (2015).


    Google Scholar
     

  • Sengupta, A., Li, Z., Song, L. F., Li, P. & Merz, K. M. Jr. Parameterization of monovalent ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J. Chem. Inf. Model. 61, 869–880 (2021).


    Google Scholar
     



  • Source link

    ATP Biophysical chemistry Chemistry/Food Science condensates General intermediates Nanocluster orchestrate phase Solution-state NMR Transition
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
    thanhphuchoang09
    admin
    • Website

    Related Posts

    Chemistry

    Molecules of the year 2025: Benzene-busting inverted sandwich.

    January 7, 2026
    Chemistry

    Mild Hydrolysis of PET and Electrochemical Energy Recovery via Multifunctional Polyoxometalate Catalysts

    January 6, 2026
    Chemistry

    Beyond silicon: These shape-shifting molecules could be the future of AI hardware

    January 4, 2026
    Chemistry

    The membrane transition strongly enhances biopolymer condensation through prewetting

    January 3, 2026
    Chemistry

    Molecules of the year 2025: Cyclo[48]carbon and others – the onset of bond alternation and the Raman Activity Spectrum.

    January 1, 2026
    Chemistry

    Amorphous/crystalline heterogeneous interface synergizing with in-situ generated dual Cl –repelling layers to realize ultrastable seawater oxidation

    December 31, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Top Posts

    Announcing the All-New EdTechTeacher Summer Learning Pass!

    May 31, 202555 Views

    Improve your speech with immersive lessons!

    May 28, 202550 Views

    Hannah’s Spring Semester in Cannes

    May 28, 202546 Views

    Weekly Student News Quiz: National Guard, Taylor Swift, Comets

    October 13, 202545 Views
    Don't Miss

    Best UK Study Abroad Consultancy in Ameerpet

    By adminJanuary 8, 20260

    Choosing the right consultancy can save you time, effort, and unnecessary stress. Global Six Sigma…

    Meet 4 People Who Did an Internship in France with AIFS Abroad

    January 7, 2026

    Top USA Education Consultants in Hyderabad

    January 4, 2026

    Claire’s Semester Abroad in Dublin, Ireland

    January 3, 2026
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us
    About Us

    Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

    Our Picks

    5 Reasons To Subscribe to Tech & Learning

    January 8, 2026

    Best UK Study Abroad Consultancy in Ameerpet

    January 8, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    Copyright© 2025 Bkngpnarnaul All Rights Reserved.
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.