Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Wang, J. et al. A Molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e616 (2018).
Li, Y. et al. Membraneless organelles in health and disease: exploring the molecular basis, physiological roles and pathological implications. Signal Transduct. Target. Ther. 9, 305 (2024).
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat. Commun. 14, 5527 (2023).
Ambadi Thody, S. et al. Small-molecule properties define partitioning into biomolecular condensates. Nat. Chem. 16, 1794–1802 (2024).
Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science 367, 464–468 (2020).
Snead, W. T. & Gladfelter, A. S. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol. Cell 76, 295–305 (2019).
Zhao, Y. G. & Zhang, H. Phase separation in membrane biology: the interplay between membrane-bound organelles and membraneless condensates. Dev. Cell 55, 30–44 (2020).
Omiatek, D. M. et al. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci. Rep. 3, 1447 (2013).
Estevez-Herrera, J. et al. ATP: The crucial component of secretory vesicles. Proc. Natl Acad. Sci. USA. 113, E4098–E4106 (2016).
Sleutel, M. & Van Driessche, A. E. Role of clusters in nonclassical nucleation and growth of protein crystals. Proc. Natl Acad. Sci. USA. 111, E546–E553 (2014).
Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).
Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. Engl. 56, 11354–11359 (2017).
Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).
Portz, B. & Shorter, J. Biochemical timekeeping via reentrant phase transitions. J. Mol. Biol. 433, 166794 (2021).
Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225 e224 (2021).
Chawla, R. et al. Reentrant DNA shells tune polyphosphate condensate size. Nat. Commun. 15, 9258 (2024).
Wadsworth, G. M. et al. RNA-driven phase transitions in biomolecular condensates. Mol. Cell 84, 3692–3705 (2024).
Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).
Martin, E. W. et al. A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nat. Commun. 12, 4513 (2021).
Chatterjee, S. et al. Reversible kinetic trapping of FUS biomolecular condensates. Adv. Sci. 9, e2104247 (2022).
Carducci, F., Yoneda, J. S., Itri, R. & Mariani, P. On the structural stability of guanosine-based supramolecular hydrogels. Soft Matter 14, 2938–2948 (2018).
Tang, Y. M. et al. Prediction and characterization of liquid-liquid phase separation of minimalistic peptides. Cell Rep. Phys. Sci. 2, 100579 (2021).
Bai, Q., Zhang, Q., Jing, H., Chen, J. & Liang, D. Liquid-Liquid Phase Separation of Peptide/Oligonucleotide Complexes in Crowded Macromolecular Media. J. Phys. Chem. B 125, 49–57 (2021).
Yuan, C. Q., Li, Q., Xing, R. R., Li, J. B. & Yan, X. H. Peptide self-assembly through liquid-liquid phase separation. Chem 9, 2425–2445 (2023).
Meyers, K. M., Holmsen, H. & Seachord, C. L. Comparative-study of platelet dense granule constituents. Am. J. Physiol. 243, R454–R461 (1982).
Hiasa, M. et al. Essential role of vesicular nucleotide transporter in vesicular storage and release of nucleotides in platelets. Physiol. Rep. 2, e12034 (2014).
Pokrovskaya, I. D. et al. 3D ultrastructural analysis of alpha-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets. Res. Pract. Thromb. Haemost. 4, 72–85 (2020).
Ugurbil, K., Fukami, M. H. & Holmsen, H. P-31 NMR-studies of nucleotide storage in the dense granules of pig platelets. Biochemistry 23, 409–416 (1984).
Takaya, K., Niiya, K., Toyoda, M. & Masuda, T. High magnesium concentrations in the dense bodies of human blood platelets from patients with atopic dermatitis and chronic myelogenous leukemia. Med. Electron Microsc. 27, 330–332 (1994).
Berneis, K. H., Pletscher, A. & Daprada, M. Phase separation in solutions of noradrenaline and adenosine triphosphate – influence of bivalent cations and drugs. Br. J. Pharmacol. 39, 382–389 (1970).
Hubley, M. J., Locke, B. R. & Moerland, T. S. The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. Biochim. Biophys. Acta 1291, 115–121 (1996).
Sigel, H. & Griesser, R. Nucleoside 5’-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Chem. Soc. Rev. 34, 875–900 (2005).
Fawzi, N. L., Ying, J., Ghirlando, R., Torchia, D. A. & Clore, G. M. Atomic-resolution dynamics on the surface of amyloid-beta protofibrils probed by solution NMR. Nature 480, 268–272 (2011).
Fawzi, N. L., Ying, J., Torchia, D. A. & Clore, G. M. Probing exchange kinetics and atomic resolution dynamics in high-molecular-weight complexes using dark-state exchange saturation transfer NMR spectroscopy. Nat. Prot. 7, 1523–1533 (2012).
Egner, T. K., Naik, P., Nelson, N. C., Slowing, I. I. & Venditti, V. Mechanistic insight into nanoparticle surface adsorption by solution nmr spectroscopy in an aqueous gel. Angew. Chem. Int. Ed. Engl. 56, 9802–9806 (2017).
Kamagata, K. et al. Molecular principles of recruitment and dynamics of guest proteins in liquid droplets. Sci. Rep. 11, 19323 (2021).
Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).
Ma, Y. et al. Nucleobase Clustering contributes to the formation and hollowing of repeat-expansion RNA condensate. J. Am. Chem. Soc. 144, 4716–4720 (2022).
Majumder, S., Coupe, S., Fakhri, N. & Jain, A. Sequence-encoded intermolecular base pairing modulates fluidity in DNA and RNA condensates. Nat. Commun. 16, 4258 (2025).
Collins, K. D. Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization. Biophys. Chem. 119, 271–281 (2006).
Stern, N. et al. Studies of Mg2+/Ca2+ complexes of naturally occurring dinucleotides: potentiometric titrations, NMR, and molecular dynamics. J. Biol. Inorg. Chem. 17, 861–879 (2012).
Gliko, O. et al. Metastable liquid clusters in super- and undersaturated protein solutions. J. Phys. Chem. B 111, 3106–3114 (2007).
Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753–756 (2017).
Mehringer, J. et al. Hofmeister versus Neuberg: is ATP really a biological hydrotrope?. Cell Rep. Phys. Sci. 2, 100343 (2021).
Zhu, Y. et al. ATP promotes protein coacervation through conformational compaction. J. Mol. Cell. Biol. 16, mjae038 (2025).
Dinsmore, A., Dubin, P. & Grason, G. Clustering in complex fluids. J. Phys. Chem. B 115, 7173–7174 (2011).
Wang, X. et al. An inorganic biopolymer polyphosphate controls positively charged protein phase transitions. Angew. Chem. Int. Ed. Engl. 59, 2679–2683 (2020).
Ge, S., White, J. G. & Haynes, C. L. Quantal release of serotonin from platelets. Anal. Chem. 81, 2935–2943 (2009).
Ge, S., Woo, E., White, J. G. & Haynes, C. L. Electrochemical measurement of endogenous serotonin release from human blood platelets. Anal. Chem. 83, 2598–2604 (2011).
Kang, M., Day, C. A., Drake, K., Kenworthy, A. K. & DiBenedetto, E. A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes. Biophys. J. 97, 1501–1511 (2009).
Loren, N. et al. Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Q. Rev. Biophys. 48, 323–387 (2015).
Dalvit, C., Fogliatto, G., Stewart, A., Veronesi, M. & Stockman, B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J. Biomol. NMR 21, 349–359 (2001).
Melacini, G., Kaptein, R. & Boelens, R. Editing of chemical exchange-relayed NOEs in NMR experiments for the observation of protein-water interactions. J. Magn. Reson. 136, 214–218 (1999).
Wu, D. H., Chen, A. D. & Johnson, C. S. An Improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson., Ser. A 115, 260–264 (1995).
Vallurupalli, P., Bouvignies, G. & Kay, L. E. Studying “invisible” excited protein states in slow exchange with a major state conformation. J. Am. Chem. Soc. 134, 8148–8161 (2012).
Singh, M. & Sharma, Y. K. Applications of activation energy and transition state theory for nucleos(t)ides and furanose helix puckering interactions in aqueous medium from 288.15 to 298.15. K. Phys. Chem. Liq. 44, 1–14 (2006).
Meagher, K. L., Redman, L. T. & Carlson, H. A. Development of polyphosphate parameters for use with the AMBER force field. J. Comput. Chem. 24, 1016–1025 (2003).
Shabane, P. S., Izadi, S. & Onufriev, A. V. General purpose water model can improve atomistic simulations of intrinsically disordered proteins. J. Chem. Theory Comput. 15, 2620–2634 (2019).
Mori, T. & Yoshida, N. Tuning the ATP-ATP and ATP-disordered protein interactions in high ATP concentration by altering water models. J. Chem. Phys. 159, 035102 (2023).
Li, P., Song, L. F. & Merz, K. M. Jr Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. J. Chem. Theory Comput. 11, 1645–1657 (2015).
Sengupta, A., Li, Z., Song, L. F., Li, P. & Merz, K. M. Jr. Parameterization of monovalent ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J. Chem. Inf. Model. 61, 869–880 (2021).
