Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

February Lesson Plans for Special Education

January 22, 2026

Designing the 2026 Classroom: Emerging Learning Trends in an AI-Powered Education System – Faculty Focus

January 22, 2026

A Brief Introduction to Buckminster Fuller and His Techno-Optimistic Ideas

January 22, 2026
Facebook X (Twitter) Instagram
Friday, January 23
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Biology»Methylglyoxal in Aortic Stiffening in Mice – Fight Aging!
Biology

Methylglyoxal in Aortic Stiffening in Mice – Fight Aging!

adminBy adminDecember 21, 2025No Comments4 Mins Read4 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Methylglyoxal in Aortic Stiffening in Mice – Fight Aging!
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link



In flexible, elastic tissues such as skin and blood vessel walls, large molecules of the extracellular matrix must be able to move relative to one another. When undesirable cross-links form between these molecules, tissue loses its elasticity and flexibility. Much of this undesirable cross-linking is the result of interactions with sugars, particularly via a class of compounds known as advanced glycation end-products, AGEs. In addition to the cross-linking, AGEs also provoke inflammation via interaction with the receptor for AGEs, RAGE. This is a well known harmful feature of the high-sugar, dysfunctional diabetic metabolism.


In the late 1990s and early 2000s, alagebrium was developed as a drug candidate on the basis of being able to break forms of AGE-induced cross-links found in arterial tissues, and thus reduce age-related arterial stiffening in preclinical studies in mice. In addition to breaking some forms of cross-link, alagebrium was also found to scavenge methylglyoxal, a particularly obnoxious precursor to AGEs and bad actor in diabetic metabolism. Sadly, the cross-links broken by alagebrium are prevalent in mice, but not in humans. Even more sadly, the failure of alagebrium to improve arterial stiffening in human clinical trials sabotaged any likelihood of further clinical trials in diabetic patients – so we have no idea whether alagebrium may or may not have improved the human diabetic metabolism to a sufficient degree to be useful.


The challenge with AGEs is that there are a lot of them, their chemistry is notably different from one to another, the catalog is incomplete, it is unclear whether the present consensus on which AGEs are important and which are not is correct, and this continues to be a relatively poorly studied part of the field. One of the consequences is a tendency for wheels to be reinvented. One might look at today’s paper in which researchers use a novel mix of supplements in mice to try to reduce the aortic stiffening induced by methylglyoxal. That alagebrium improved aortic elasticity in mice, and failed to do so in humans, strongly suggests that the effort here is a dead end (or at least says little about the actual merits of the product undergoing testing), and no amount of skating over that point in the paper’s discussion is going to change that reality.


Methylglyoxal-induced glycation stress promotes aortic stiffening: putative mechanistic roles of oxidative stress and cellular senescence



In this study, we investigated the impact of glycation stress on aortic stiffness in young and old mice, induced by advanced glycation end-product (AGE) precursor methylglyoxal (MGO) and its non-crosslinking AGE MGO-derived hydroimidazolone (MGH)-1, explored the potential molecular mechanisms involved, and evaluated the therapeutic potential of the glycation-lowering compound Gly-Low. We used a series of complementary in vivo, ex vivo, and in vitro experimental approaches to determine the causal role of MGO-induced glycation stress in aortic stiffening and the putative underlying mechanisms mediating this response, including excessive oxidative stress and cellular senescence. Additionally, we explored the therapeutic potential of Gly-Low, a cocktail consisting of the natural compounds nicotinamide, pyridoxine, thiamine, piperine, and alpha-lipoic acid, in mitigating aortic stiffening, oxidative stress, and cellular senescence mediated by MGO-induced glycation stress.



While MGO has previously been implicated in endothelial dysfunction, our results demonstrate that chronic MGO exposure significantly increases aortic stiffness in young mice. This effect was particularly pronounced in our pharmacological model of glycation stress, where young adult mice exhibited a marked increase in aortic stiffness after just two months of MGO exposure. Lastly, we also demonstrate the direct influence of glycation stress in mediating age-related aortic stiffening, which underscores the critical role of AGEs in promoting aortic stiffening with aging. Notably, our results also reveal the direct impact of MGO on aortic stiffening, supporting the notion that MGO-induced glycation stress can independently drive this pathology.



Source link

Aging Aortic Fight Methylglyoxal Mice Stiffening
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Biology

Detect Complexes, Aggregates, and Heterogeneity

January 22, 2026
Biology

The hard truth about how hard it is to publish in Development 

January 21, 2026
Biology

Age-Related Loss of Proteosomal Function Triggers Chronic Inflammation via cGAS-STING – Fight Aging!

January 18, 2026
Biology

How to Detect Low-affinity Protein Binding Without Surface Plasmon Resonance

January 17, 2026
Biology

The health impacts of microplastics are studied using a Xenopus amphibian model.

January 13, 2026
Biology

Why Don’t Elephants Get Cancer? – Peto’s Paradox

January 12, 2026
Add A Comment
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202555 Views

Improve your speech with immersive lessons!

May 28, 202553 Views

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 202550 Views

What Helps Nerve Pain in Legs After Back Surgery?

October 13, 202548 Views
Don't Miss

AIFS Abroad Student Spotlight: Molly’s Fall Semester in Prague

By adminJanuary 22, 20260

29 Eager to step into the footsteps of a college student who studied abroad in…

Top 10 Abroad Education Consultants in Hyderabad

January 19, 2026

AIFS Abroad Student Spotlight: Valeria’s Summer in Madrid, Spain 

January 18, 2026

Best Abroad Education Consultants for UK in Hyderabad

January 12, 2026
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

February Lesson Plans for Special Education

January 22, 2026

Designing the 2026 Classroom: Emerging Learning Trends in an AI-Powered Education System – Faculty Focus

January 22, 2026

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.