Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

University of Virginia President Resigns After Trump’s Demands

June 28, 2025

X-ray boosting fabric could make mammograms less painful

June 28, 2025

Wolfram Education Programs for Middle School, High School and Beyond—Wolfram Blog

June 28, 2025
Facebook X (Twitter) Instagram
Saturday, June 28
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Investigating the metastability of amorphous calcium carbonate by droplet microfluidics experiments using machine learning
Chemistry

Investigating the metastability of amorphous calcium carbonate by droplet microfluidics experiments using machine learning

adminBy adminJune 20, 20251 Comment8 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Investigating the metastability of amorphous calcium carbonate by droplet microfluidics experiments using machine learning
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Nicholas, T. C. et al. Geometrically frustrated interactions drive structural complexity in amorphous calcium carbonate. Nat. Chem. 16, 36–41 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Addadi, L., Raz, S. & Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Mergelsberg, S. T. et al. Metastable solubility and local structure of amorphous calcium carbonate (ACC). Geochim. Cosmochim. Acta 289, 196–206 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rodriguez-Navarro, C., Kudłacz, K., Cizer, Ö. & Ruiz-Agudo, E. Formation of amorphous calcium carbonate and its transformation into mesostructured calcite. Cryst. Eng. Comm. 17, 58–72 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wu, W. et al. Bioinspired stabilization of amorphous calcium carbonate by carboxylated nanocellulose enables mechanically robust, healable, and sensing biocomposites. ACS Nano 17, 6664–6674 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otter, L. et al. Growth dynamics and amorphous-to-crystalline phase transformation in natural nacre. Nat. Commun. 14, 2254 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goffredo, S. et al. Biomineralization control related to population density under ocean acidification. Nat. Climate Change 4, 593–597 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. J. et al. Carbonate coprecipitation for Cd and Zn treatment and evaluation of heavy metal stability under acidic conditions. Environ. Sci. Technol. 57, 3104–3113 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poonoosamy, J. et al. The use of microfluidic platforms with raman spectroscopy for investigating the co-precipitation of metals and radionuclides in carbonates. Minerals 13, 636 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ait-Mouheb, N. et al. Retention of \(^{226}\)Ra in the sandy Opalinus Clay facies from the Mont Terri rock laboratory, Switzerland. Appl. Geochem. 170, 106048 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Meldrum, F. C. & Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108, 4332–4432 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilbert, P. U. et al. Biomineralization: Integrating mechanism and evolutionary history. Sci. Adv. 8, eabl9653 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, Z. et al. Additives control the stability of amorphous calcium carbonate via two different mechanisms: Surface adsorption versus bulk incorporation. Adv. Funct. Mater. 30, 2000003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Raiteri, P. & Gale, J. D. Water is the key to nonclassical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 132, 17623–17634 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, H. et al. Amorphous CaCO\(_{3}\): Influence of the formation time on its degree of hydration and stability. J. Am. Chem. Soc. 140, 14289–14299 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, Z., Xie, J., Macias-Sanchez, E. & Fu, Z. Nonclassical crystallization of amorphous calcium carbonate in the presence of phosphate ions. Crystal Growth & Design 21, 414–423 (2020).

    Article 

    Google Scholar
     

  • Molnár, Z., Dódony, I. & Pósfai, M. Transformation of amorphous calcium carbonate in the presence of magnesium, phosphate, and mineral surfaces. Geochim. Cosmochim. Acta 345, 90–101 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Albéric, M. et al. The crystallization of amorphous calcium carbonate is kinetically governed by ion impurities and water. Adv. Sci. 5, 1701000 (2018).

    Article 

    Google Scholar
     

  • Stephens, C. J., Ladden, S. F., Meldrum, F. C. & Christenson, H. K. Amorphous calcium carbonate is stabilized in confinement. Adv. Funct. Mater. 20, 2108–2115 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Cavanaugh, J., Whittaker, M. L. & Joester, D. Crystallization kinetics of amorphous calcium carbonate in confinement. Chem. Sci. 10, 5039–5043 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meldrum, F. C. & O’Shaughnessy, C. Crystallization in confinement. Adv. Mater. 32, 2001068 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yashina, A., Meldrum, F. & Demello, A. Calcium carbonate polymorph control using droplet-based microfluidics. Biomicrofluidics 6, 022001 (2012).

    Article 
    PubMed Central 

    Google Scholar
     

  • Li, S. & Lian, B. Application of calcium carbonate as a controlled release carrier for therapeutic drugs. Minerals 13, 1136 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Whittaker, M. L., Sun, W., Duggins, D. O., Ceder, G. & Joester, D. Dynamic barriers to crystallization of calcium barium carbonates. Crystal Growth & Design 21, 4556–4563 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Poonoosamy, J. et al. A lab on a chip experiment for upscaling diffusivity of evolving porous media. Energies 15, 2160 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Poonoosamy, J. et al. A lab-on-a-chip approach integrating in-situ characterization and reactive transport modelling diagnostics to unravel (Ba, Sr) SO\(_{4}\) oscillatory zoning. Sci. Rep. 11, 23678 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Investigating the nucleation kinetics of calcium carbonate using a zero-water-loss microfluidic chip. Crystal Growth & Design 20, 2787–2795 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Poonoosamy, J. et al. A radiochemical lab-on-a-chip paired with computer vision to unlock the crystallization kinetics of (Ba, Ra)SO\(_{4}\). Sci. Rep. 14 (2024).

  • Lönartz, M., Yang, Y., Deissmann, G., Bosbach, D. & Poonoosamy, J. Capturing the dynamic processes of porosity clogging. Water Resources Research 59 (2023).

  • Boyd, V. et al. Influence of Mg\(^{2+}\) on CaCO\(_{3}\) precipitation during subsurface reactive transport in a homogeneous silicon-etched pore network. Geochim. Cosmochim. Acta 135, 321–335 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yoon, H., Chojnicki, K. N. & Martinez, M. J. Pore-scale analysis of calcium carbonate precipitation and dissolution kinetics in a microfluidic device. Environ. Sci. Technol. 53, 14233–14242 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, H., Fitts, J. P., Tappero, R. V., Kim, J. J. & Peters, C. A. Acid erosion of carbonate fractures and accessibility of arsenic-bearing minerals: In operando synchrotron-based microfluidic experiment. Environ. Sci. Technol. 54, 12502–12510 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Radajewski, D. et al. An innovative data processing method for studying nanoparticle formation in droplet microfluidics using x-rays scattering. Lab on a Chip 21, 4498–4506 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poonoosamy, J. et al. Microfluidic investigation of pore-size dependency of barite nucleation. Commun. Chem. 6, 250 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poonoosamy, J. et al. Microfluidic flow-through reactor and 3D raman imaging for in situ assessment of mineral reactivity in porous and fractured porous media. Lab Chip 20, 2562–2571 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, Y., Chen, S., Zheng, Y., Zheng, X. & Lin, J.-M. Droplet-based digital pcr (ddpcr) and its applications. TrAC Trends in Anal. Chem. 158, 116897 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chagot, L. et al. Surfactant-laden droplet size prediction in a flow-focusing microchannel: A data-driven approach. Lab Chip 22, 3848–3859 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yiannacou, K., Sharma, V. & Sariola, V. Programmable droplet microfluidics based on machine learning and acoustic manipulation. Langmuir 38, 11557–11564 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solanki, S. et al. Machine learning for predicting microfluidic droplet generation properties. Comput. Fluids 247, 105651 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Lashkaripour, A. et al. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat. Commun. 12, 25 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riti, J. et al. Combining deep learning and droplet microfluidics for rapid and label-free antimicrobial susceptibility testing of colistin. Biosensors and Bioelectron. 257, 116301 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Gardner, K. et al. Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets. Lab Chip 22, 4067–4080 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dos Santos, E. C., Ładosz, A., Maggioni, G. M., von Rohr, P. R. & Mazzotti, M. Characterization of shapes and volumes of droplets generated in pdms t-junctions to study nucleation. Chem. Eng. Res. Design 138, 444–457 (2018).

    Article 

    Google Scholar
     

  • Wehrmeister, U., Jacob, D., Soldati, A., Hager, T. & Hofmeister, W. Vaterite in freshwater cultured pearls from china and japan. J. Gemmol. 30, 399 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Darkins, R. et al. Calcite kinetics for spiral growth and two-dimensional nucleation. Crystal Growth & Design 22, 4431–4436 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y.-W., Kim, Y.-Y., Stephens, C., Meldrum, F. & Christenson, H. In situ study of the precipitation and crystallization of amorphous calcium carbonate (ACC). Crystal Growth & Design 12, 1212–1217 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, Part III 18, 234–241 (Springer, 2015).

  • Saini, M. & Susan, S. Tackling class imbalance in computer vision: A contemporary review. Art. Intell. Rev. 56, 1279–1335 (2023).

    Article 

    Google Scholar
     

  • Zhong, Z. et al. Understanding imbalanced semantic segmentation through neural collapse. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 19550–19560 (2023).

  • Santoso, R., He, X. & Hoteit, H. Application of machine-learning to construct simulation models from high-resolution fractured formation. In Abu Dhabi International Petroleum Exhibition and Conference, D021S060R004 (SPE, 2019).

  • Bradski, G. & Kaehler, A. Learning OpenCV: Computer vision with the OpenCV library (“O’Reilly Media, Inc.”, 2008).

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • van der Walt, S. et al. scikit-image: Image processing in Python. PeerJ 2, e453 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whittaker, M. L., Dove, P. M. & Joester, D. Nucleation on surfaces and in confinement. MRS Bull. 41, 388–392 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), 801–818 (2018).

  • Jülich Supercomputing Centre. JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülich Supercomputing Centre. JLSRF 7, 1–9 (2021).



  • Source link

    amorphous Amorphous calcium carbonate calcium carbonate Computer science droplet Droplet microfluidics Environmental chemistry Experiments Humanities and Social Sciences Information Technology Investigating Lab-on-a-chip Learning machine Machine learning metastability microfluidics multidisciplinary Optical spectroscopy Science Scientific data
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
    yhhifa9
    admin
    • Website

    Related Posts

    Chemistry

    Dynamic model captures loop flexibility in swine virus drug design

    June 28, 2025
    Chemistry

    Estructuras de resonancia | ChemTalk

    June 27, 2025
    Chemistry

    Sustainable gold extraction from ore and electronic waste

    June 26, 2025
    Educational Technology

    AI for Teaching and Learning: Human Approaches for Technology Integration

    June 26, 2025
    Education

    Making Learning Personal And Effective With Training Videos

    June 25, 2025
    Chemistry

    A brief guide to the types and uses of solvents

    June 25, 2025
    View 1 Comment

    1 Comment

    1. * * * Unlock Free Spins Today: https://google.com * * * hs=275fa1a3f5231c31f90439bb2a0551fb* ххх*
      * * * Unlock Free Spins Today: https://google.com * * * hs=275fa1a3f5231c31f90439bb2a0551fb* ххх* on June 23, 2025 1:56 pm

      u9mrhd

      Reply
    Leave A Reply Cancel Reply

    Top Posts

    10 Student Engagement Strategies That Empower Learners –

    May 28, 20253 Views

    Do You Hear What I Hear? Audio Illusions and Misinformation

    May 28, 20253 Views

    Improve your speech with immersive lessons!

    May 28, 20252 Views

    Arabic poetry, with a special focus on Palestine – Global Studies Blog

    May 28, 20252 Views
    Don't Miss

    Open Access Week 2023–South Asia Resources

    By adminJune 28, 20250

    Open Access Week 2023 To suggest new content for SAOA, use the suggestion form. Source…

    Best Abroad Study Consultants Near Me

    June 27, 2025

    Hayley’s Spring Semester in Maynooth

    June 26, 2025

    Study MD MS in UK Without PLAB

    June 23, 2025
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us
    About Us

    Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

    Our Picks

    University of Virginia President Resigns After Trump’s Demands

    June 28, 2025

    X-ray boosting fabric could make mammograms less painful

    June 28, 2025

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    Copyright© 2025 Bkngpnarnaul All Rights Reserved.
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.