Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Are Adapted Books Good or Bad?

December 12, 2025

Willamette University and Pacific University seek to merge

December 12, 2025

Free AI Use Policy Templates for Teachers

December 12, 2025
Facebook X (Twitter) Instagram
Friday, December 12
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Biology»Injected Oxytocin Slows Cognitive Decline in Aged Mice – Fight Aging!
Biology

Injected Oxytocin Slows Cognitive Decline in Aged Mice – Fight Aging!

adminBy adminNovember 21, 2025No Comments3 Mins Read16 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Injected Oxytocin Slows Cognitive Decline in Aged Mice – Fight Aging!
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link



Circulating oxytocin levels are known to decline with age, and a number of research groups have focused on upregulation of oxytocin as an approach to treating aging. A couple of papers published a few months ago are indicative of the animal studies presently taking place, the first focused on increased longevity in mice achieved via the combined reduction of TGF-β and increase in oxytocin, and the second evaluating intranasal delivery of oxytoxin as a route to improve function in the aging brain.


Today’s paper reports on another example of oxytocin delivery in aged mice. These researchers are also focused on the brain, but in this case the oxytocin is delivered via intraperitoneal injection. As with most peptide or protein therapies, the effects are limited in scope as the delivered molecules have a short half-life. Repeated treatments are required, often daily, as is the case here. Given further progress towards the clinic, however, we might expect that the community of developers presently assessing gene therapies to safely transform a small number of cells into long-lasting factories that produce a desired circulating molecule (such as klotho or follistatin) will add oxytocin to their list.


Oxytocin enhances neurogenesis and synaptic plasticity to attenuate age-related cognitive decline in aged mice



Brain aging is characterized by progressive structural and functional deterioration, leading to cognitive decline and impaired social functioning. A key factor in this process is the age-related decline in adult neurogenesis, particularly in the hippocampal dentate gyrus, which is linked to deficits in learning, memory, and increased social anxiety. Oxytocin, a neuropeptide synthesized in the hypothalamus, regulates social behavior, cognition, and emotion by acting on brain regions including the hippocampus. Importantly, oxytocin levels decrease with age, potentially contributing to cognitive impairment.



Here, we examined whether chronic intraperitoneal oxytocin administration could attenuate cognitive decline in aged mice. Twelve-month-old mice received oxytocin injections (0.5 mg/kg) five times weekly for 13 weeks. Behavioral testing at 12 weeks of treatment using the object-place recognition task showed enhanced spatial learning and recognition memory in oxytocin-treated mice compared with saline controls. Immunohistochemistry revealed significantly increased doublecortin (DCX)-positive cells in the hippocampus, indicating enhanced neurogenesis. Furthermore, oxytocin treatment upregulated the expression of glutamate receptor 1 (GluR1) and N-methyl-D-aspartate receptor subunit 2B (NMDAR2B), which are markers of synaptic plasticity.



These findings suggest that chronic oxytocin treatment is associated with enhanced neurogenesis and synaptic plasticity, which may contribute to improved cognition in aged mice. Our results support oxytocin as a potential therapeutic agent for age-related cognitive decline.



Source link

Aged Aging Cognitive Decline Fight Injected Mice Oxytocin Slows
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Biology

Declining Chaperone Mediated Autophagy in the Aging of Muscle Tissue – Fight Aging!

December 11, 2025
Biology

The Evolution of Gel and Blot Imaging From Film to Lasers

December 10, 2025
Biology

preLighters’ choice – November’s handpicked preprints

December 9, 2025
Biology

Teach the Electron Transport Chain with Cyanide Poisoning

December 8, 2025
Biology

High Variance in Individual Responses is Another Complexity in Attempting to Slow Aging via Metabolic Manipulation – Fight Aging!

December 6, 2025
Biology

Smarter Quantification for 3D Cell Models

December 5, 2025
Add A Comment
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202550 Views

Improve your speech with immersive lessons!

May 28, 202545 Views

Hannah’s Spring Semester in Cannes

May 28, 202539 Views

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 202533 Views
Don't Miss

How Do I Find A Study Abroad Program that Matches My Major?

By adminDecember 11, 20250

176 If you’re a college student planning to study abroad, your major is likely one…

Winter Holidays Around the World: Seasonal Celebrations Abroad

December 7, 2025

Introducing AIFS Abroad’s Spring 2026 Green Ambassadors

December 3, 2025

Meet Two People Who Did an Internship Abroad in Lisbon, Portugal

November 29, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

Are Adapted Books Good or Bad?

December 12, 2025

Willamette University and Pacific University seek to merge

December 12, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.