Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Parents Should Continue to File Disability Rights Complaints, Say Special Ed. Advocates

November 22, 2025

Sonoma State University gets new leader after turbulent year of cuts

November 22, 2025

Magically Create Google Slides with Google Gemini

November 22, 2025
Facebook X (Twitter) Instagram
Saturday, November 22
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Biology»Injected Oxytocin Slows Cognitive Decline in Aged Mice – Fight Aging!
Biology

Injected Oxytocin Slows Cognitive Decline in Aged Mice – Fight Aging!

adminBy adminNovember 21, 2025No Comments3 Mins Read3 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Injected Oxytocin Slows Cognitive Decline in Aged Mice – Fight Aging!
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link



Circulating oxytocin levels are known to decline with age, and a number of research groups have focused on upregulation of oxytocin as an approach to treating aging. A couple of papers published a few months ago are indicative of the animal studies presently taking place, the first focused on increased longevity in mice achieved via the combined reduction of TGF-β and increase in oxytocin, and the second evaluating intranasal delivery of oxytoxin as a route to improve function in the aging brain.


Today’s paper reports on another example of oxytocin delivery in aged mice. These researchers are also focused on the brain, but in this case the oxytocin is delivered via intraperitoneal injection. As with most peptide or protein therapies, the effects are limited in scope as the delivered molecules have a short half-life. Repeated treatments are required, often daily, as is the case here. Given further progress towards the clinic, however, we might expect that the community of developers presently assessing gene therapies to safely transform a small number of cells into long-lasting factories that produce a desired circulating molecule (such as klotho or follistatin) will add oxytocin to their list.


Oxytocin enhances neurogenesis and synaptic plasticity to attenuate age-related cognitive decline in aged mice



Brain aging is characterized by progressive structural and functional deterioration, leading to cognitive decline and impaired social functioning. A key factor in this process is the age-related decline in adult neurogenesis, particularly in the hippocampal dentate gyrus, which is linked to deficits in learning, memory, and increased social anxiety. Oxytocin, a neuropeptide synthesized in the hypothalamus, regulates social behavior, cognition, and emotion by acting on brain regions including the hippocampus. Importantly, oxytocin levels decrease with age, potentially contributing to cognitive impairment.



Here, we examined whether chronic intraperitoneal oxytocin administration could attenuate cognitive decline in aged mice. Twelve-month-old mice received oxytocin injections (0.5 mg/kg) five times weekly for 13 weeks. Behavioral testing at 12 weeks of treatment using the object-place recognition task showed enhanced spatial learning and recognition memory in oxytocin-treated mice compared with saline controls. Immunohistochemistry revealed significantly increased doublecortin (DCX)-positive cells in the hippocampus, indicating enhanced neurogenesis. Furthermore, oxytocin treatment upregulated the expression of glutamate receptor 1 (GluR1) and N-methyl-D-aspartate receptor subunit 2B (NMDAR2B), which are markers of synaptic plasticity.



These findings suggest that chronic oxytocin treatment is associated with enhanced neurogenesis and synaptic plasticity, which may contribute to improved cognition in aged mice. Our results support oxytocin as a potential therapeutic agent for age-related cognitive decline.



Source link

Aged Aging Cognitive Decline Fight Injected Mice Oxytocin Slows
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Biology

How to Calculate Cell Proliferation Rate

November 20, 2025
Biology

preLighters’ choice – October’s handpicked preprints

November 15, 2025
Biology

Results from a Human Trial of Magnetic Mitohormesis – Fight Aging!

November 9, 2025
Science

James Watson, co-discoverer of DNA’s double helix, has died aged 97

November 8, 2025
Biology

Catch up on Development presents… webinar on development across scales

November 7, 2025
Biology

The Longevity-Associated Variant of BPIFB4 Can Be Provided Orally to Produce Benefits in Mice – Fight Aging!

November 4, 2025
Add A Comment
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202534 Views

Hannah’s Spring Semester in Cannes

May 28, 202534 Views

Improve your speech with immersive lessons!

May 28, 202533 Views

2024 in math puzzles. – Math with Bad Drawings

July 22, 202529 Views
Don't Miss

Autumn’s Summer Abroad in Galway, Ireland

By adminNovember 21, 20250

156 Eager to follow in the footsteps of a college student who interned abroad in…

Abigail’s Summer Internship in Barcelona

November 10, 2025

Bridget’s Semester Abroad in London

November 6, 2025

Meet 3 Who People Did an Internship in New York City 

November 2, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

Parents Should Continue to File Disability Rights Complaints, Say Special Ed. Advocates

November 22, 2025

Sonoma State University gets new leader after turbulent year of cuts

November 22, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.