Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

University of Virginia President Resigns After Trump’s Demands

June 28, 2025

X-ray boosting fabric could make mammograms less painful

June 28, 2025

Wolfram Education Programs for Middle School, High School and Beyond—Wolfram Blog

June 28, 2025
Facebook X (Twitter) Instagram
Sunday, June 29
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Physics»Inertia of Superconducting Particles in Twisted Trilayer Graphene
Physics

Inertia of Superconducting Particles in Twisted Trilayer Graphene

adminBy adminMay 28, 2025No Comments2 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Inertia of Superconducting Particles in Twisted Trilayer Graphene
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


May 27, 2025• Physics 18, s71

The graphene multilayer’s kinetic inductance is both high and tunable, making it a promising material for quantum technologies.

Figure captionexpand figure
R. Jha et al. [1]; adapted by APS
Figure caption
R. Jha et al. [1]; adapted by APS

×

Graphene-based superconductors are a class of materials with many superconducting phases, all of which are tunable by an electric field. One of the hallmarks of superconductivity is kinetic inductance, which quantifies the material’s tendency to oppose a change in current and which arises from the inertia of charge carriers. Rounak Jha at the University of Basel, Switzerland, and his colleagues now report the measurement of tunable kinetic inductance in so-called magic-angle twisted trilayer graphene [1]. Furthermore, they find that this kinetic inductance can be unusually large, making trilayer graphene a promising prospect for superconducting quantum computers and quantum sensors.

The researchers built a superconducting quantum interference device consisting of a loop of superconducting molybdenum-rhenium interrupted by two “weak links” of twisted trilayer graphene. They applied electrical potentials to electrodes above and below the graphene and mapped the change in resistance in the weak links. This procedure pinpointed the temperature and voltage at which the trilayers become superconducting and determined their critical current. Analyzing how this critical current changes in response to a magnetic field for various applied voltages gave the kinetic inductance, which is inversely proportional to the critical current density. These measurements showed that the kinetic inductance can be tuned by altering the field applied via the electrodes and that it can reach 150 nanohenries per square (the units used to quantify thin-film kinetic inductance), 2 orders of magnitude larger than that of commonly used superconductors.

Although trilayer graphene is likely to be harder to scale up than those other materials, the researchers say that it may complement currently available elements and lead to novel superconducting circuits.

–Rachel Berkowitz

Rachel Berkowitz is a Corresponding Editor for Physics Magazine based in Vancouver, Canada.

References

  1. R. Jha et al., “Large tunable kinetic inductance in a twisted graphene superconductor,” Phys. Rev. Lett. 134, 216001 (2025).

Subject Areas

SuperconductivityGraphene

Related Articles

Two Superconductivity States Coincide in Ultrathin Films
Route to Altermagnetic Superconductivity
Holey Material Enhances Electron Flow

More Articles



Source link

Graphene Inertia Particles Superconducting Trilayer Twisted
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
yhhifa9
admin
  • Website

Related Posts

Physics

Quantum Dots For Reliable Quantum Key Distribution

June 28, 2025
Physics

A (quantum) complex legacy: Part trois

June 27, 2025
Physics

Physicists Have No Idea What They Have Measured

June 26, 2025
Physics

Statistical physics reveals how ‘condenser’ occupations limit worker mobility – Physics World

June 25, 2025
Physics

“Droplet on a Plucked Wire” – FYFD

June 24, 2025
Physics

Unexpected mineral in a Ryugu grain challenges paradigm of the nature of primitive asteroids

June 23, 2025
Add A Comment
Leave A Reply Cancel Reply

Top Posts

10 Student Engagement Strategies That Empower Learners –

May 28, 20253 Views

Do You Hear What I Hear? Audio Illusions and Misinformation

May 28, 20253 Views

Improve your speech with immersive lessons!

May 28, 20252 Views

Arabic poetry, with a special focus on Palestine – Global Studies Blog

May 28, 20252 Views
Don't Miss

Open Access Week 2023–South Asia Resources

By adminJune 28, 20250

Open Access Week 2023 To suggest new content for SAOA, use the suggestion form. Source…

Best Abroad Study Consultants Near Me

June 27, 2025

Hayley’s Spring Semester in Maynooth

June 26, 2025

Study MD MS in UK Without PLAB

June 23, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

University of Virginia President Resigns After Trump’s Demands

June 28, 2025

X-ray boosting fabric could make mammograms less painful

June 28, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.