Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

February Lesson Plans for Special Education

January 22, 2026

Designing the 2026 Classroom: Emerging Learning Trends in an AI-Powered Education System – Faculty Focus

January 22, 2026

A Brief Introduction to Buckminster Fuller and His Techno-Optimistic Ideas

January 22, 2026
Facebook X (Twitter) Instagram
Friday, January 23
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.
Chemistry

Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.

adminBy adminSeptember 1, 20254 Comments3 Mins Read7 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.

Previously[1] I looked at some of the properties of the mysterious dimer of nitric oxide  1 – not the known weak dimer but a higher energy form with a “triple” N≡N bond. This valence bond isomer of the weak dimer was some 24 kcal/mol higher in free energy than the two nitric oxide molecules it would be formed from. An energy decomposition analysis (NEDA) of 1 revealed an interaction energy[2] of +4.5 kcal/mol for the two radical fragments, compared to eg -27 kcal/mol for the equivalent analysis of the N=N double bond in nitrosobenzene dimer[3] So here I take a look at another property of N≡N bonds via their hydrogenation energy (Scheme), mindful that the dinitrogen molecule requires forcing conditions to hydrogenate, in part because of the unfavourable entropy terms (See Wiki and also here‡ for a calculation of ΔG298).

Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.

Calculations at the ωB97XD/Def2-TZVPP/SCRF=water level[4] that whilst hydrogenation of the triple bond in N2 is strongly endo-energic, the same process for molecule 1 is exo-energic (ΔΔG -26.32 kcal/mol). The direct product is a zwitterion, but presumed rapid proton transfer to a neutral form 2 increases exo-energicity. Whilst the second hydrogenation step  of N2 is  exo-energic, the equivalent second step for 1 to  give 3 is now mildly endo-energic. Overall however, the thermodynamic energies of these two types of triple bond hydrogenation could not be more different.

So forming a N≡N triple bond by forcing two nitric oxide molecules to dimerise (using high pressure) in water produces a system where hydrogenation of that “difficult” N≡N bond is made very much easier thermodynamically. Time for an experiment?♥


‡This site reports a gas phase experimental value for ΔG -8.1 kcal/mol at 298K for this equilibrium, although the pressure is not given. The calculated value shown in the scheme above (-20.1 kcal/mol)  is for 298K and 1 atm for a model using water as solvent – which might be expected to differentially solvate the product ammonia and hence promote the reaction. In the limit of low pressure (0.0001M)[5] this reduces to -13.0 kcal/mol, increases to -26.6 kcal/mol at 10M and becomes -14.3 kcal/mol at 10M/800K, illustrating how higher pressures make the reaction more exo-energic and higher temperatures less exo-energic. This was of course the problem solved in the Haber process of finding the sweet spot between pressure and temperature.

♥Perhaps not, given the report that at high pressures, nitric oxide can become explosive.[6]



References

  1. H. Rzepa, “The even more mysterious N≡N triple bond in a nitric oxide dimer.”, 2025.
  2. H. Rzepa, “N2O2 as strong dimer? bent NEDA 0 1 0 2 0 -2 Total Interaction (E) : 4.520 Wiberg NN bond index 1.0072 NN stretch 2604 cm-1”, 2025.
  3. H. Rzepa, “Nitrosobenzene dimer NEDA=2, 0,1 0,1 0,1 Total Interaction (E) : -27.564”, 2025.
  4. H. Rzepa, “[Embargoed]”, 2025.
  5. G. Luchini, J.V. Alegre-Requena, I. Funes-Ardoiz, and R.S. Paton, “GoodVibes: automated thermochemistry for heterogeneous computational chemistry data”, F1000Research, vol. 9, pp. 291, 2020.
  6. T. Melia, “Decomposition of nitric oxide at elevated pressures”, Journal of Inorganic and Nuclear Chemistry, vol. 27, pp. 95-98, 1965.

Related


This entry was posted on Monday, August 25th, 2025 at 5:02 pm and is filed under Interesting chemistry. You can follow any responses to this entry through the RSS 2.0 feed.

You can leave a response, or trackback from your own site.



Source link

Bond dimer Hydrogenating Mysterious nitric oxide triple
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Chemistry

Rational design of PMo12-SiW12 coupled catalytic system toward energy-efficient methanol-to-hydrogen conversion

January 22, 2026
Special Education

Triple Pack Combo – 3 Books/3 PDFs for $79.95 – Save $23.75!

January 20, 2026
Chemistry

A new crystal makes magnetism twist in surprising ways

January 20, 2026
Chemistry

Facile molten salt synthesis of bimetallic NiFe-Ti3C2Tx MXene nano-hybrid as an efficient oxygen evolution electrocatalyst

January 19, 2026
Chemistry

Silicon Solar Cells | ChemTalk

January 18, 2026
Chemistry

What are rubber ducks made from?

January 17, 2026
View 4 Comments

4 Comments

  1. Walter3177
    Walter3177 on September 1, 2025 4:37 pm

    https://shorturl.fm/wORPt

    Log in to Reply
  2. Michael708
    Michael708 on September 1, 2025 9:10 pm

    https://shorturl.fm/Y4t82

    Log in to Reply
  3. Atticus1080
    Atticus1080 on September 2, 2025 3:36 am

    https://shorturl.fm/gSosb

    Log in to Reply
  4. Josiah4625
    Josiah4625 on September 2, 2025 4:42 am

    https://shorturl.fm/lT2t4

    Log in to Reply
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202555 Views

Improve your speech with immersive lessons!

May 28, 202553 Views

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 202550 Views

What Helps Nerve Pain in Legs After Back Surgery?

October 13, 202548 Views
Don't Miss

AIFS Abroad Student Spotlight: Molly’s Fall Semester in Prague

By adminJanuary 22, 20260

29 Eager to step into the footsteps of a college student who studied abroad in…

Top 10 Abroad Education Consultants in Hyderabad

January 19, 2026

AIFS Abroad Student Spotlight: Valeria’s Summer in Madrid, Spain 

January 18, 2026

Best Abroad Education Consultants for UK in Hyderabad

January 12, 2026
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

February Lesson Plans for Special Education

January 22, 2026

Designing the 2026 Classroom: Emerging Learning Trends in an AI-Powered Education System – Faculty Focus

January 22, 2026

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.