Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

MENA strengthens its role in global student mobility

January 2, 2026

Citing ChatGPT in APA and MLA

January 2, 2026

Top 7 iSpring LMS Alternatives in 2025

January 2, 2026
Facebook X (Twitter) Instagram
Friday, January 2
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.
Chemistry

Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.

adminBy adminSeptember 1, 20254 Comments3 Mins Read6 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.

Previously[1] I looked at some of the properties of the mysterious dimer of nitric oxide  1 – not the known weak dimer but a higher energy form with a “triple” N≡N bond. This valence bond isomer of the weak dimer was some 24 kcal/mol higher in free energy than the two nitric oxide molecules it would be formed from. An energy decomposition analysis (NEDA) of 1 revealed an interaction energy[2] of +4.5 kcal/mol for the two radical fragments, compared to eg -27 kcal/mol for the equivalent analysis of the N=N double bond in nitrosobenzene dimer[3] So here I take a look at another property of N≡N bonds via their hydrogenation energy (Scheme), mindful that the dinitrogen molecule requires forcing conditions to hydrogenate, in part because of the unfavourable entropy terms (See Wiki and also here‡ for a calculation of ΔG298).

Hydrogenating the even more mysterious N≡N triple bond in a nitric oxide dimer.

Calculations at the ωB97XD/Def2-TZVPP/SCRF=water level[4] that whilst hydrogenation of the triple bond in N2 is strongly endo-energic, the same process for molecule 1 is exo-energic (ΔΔG -26.32 kcal/mol). The direct product is a zwitterion, but presumed rapid proton transfer to a neutral form 2 increases exo-energicity. Whilst the second hydrogenation step  of N2 is  exo-energic, the equivalent second step for 1 to  give 3 is now mildly endo-energic. Overall however, the thermodynamic energies of these two types of triple bond hydrogenation could not be more different.

So forming a N≡N triple bond by forcing two nitric oxide molecules to dimerise (using high pressure) in water produces a system where hydrogenation of that “difficult” N≡N bond is made very much easier thermodynamically. Time for an experiment?♥


‡This site reports a gas phase experimental value for ΔG -8.1 kcal/mol at 298K for this equilibrium, although the pressure is not given. The calculated value shown in the scheme above (-20.1 kcal/mol)  is for 298K and 1 atm for a model using water as solvent – which might be expected to differentially solvate the product ammonia and hence promote the reaction. In the limit of low pressure (0.0001M)[5] this reduces to -13.0 kcal/mol, increases to -26.6 kcal/mol at 10M and becomes -14.3 kcal/mol at 10M/800K, illustrating how higher pressures make the reaction more exo-energic and higher temperatures less exo-energic. This was of course the problem solved in the Haber process of finding the sweet spot between pressure and temperature.

♥Perhaps not, given the report that at high pressures, nitric oxide can become explosive.[6]



References

  1. H. Rzepa, “The even more mysterious N≡N triple bond in a nitric oxide dimer.”, 2025.
  2. H. Rzepa, “N2O2 as strong dimer? bent NEDA 0 1 0 2 0 -2 Total Interaction (E) : 4.520 Wiberg NN bond index 1.0072 NN stretch 2604 cm-1”, 2025.
  3. H. Rzepa, “Nitrosobenzene dimer NEDA=2, 0,1 0,1 0,1 Total Interaction (E) : -27.564”, 2025.
  4. H. Rzepa, “[Embargoed]”, 2025.
  5. G. Luchini, J.V. Alegre-Requena, I. Funes-Ardoiz, and R.S. Paton, “GoodVibes: automated thermochemistry for heterogeneous computational chemistry data”, F1000Research, vol. 9, pp. 291, 2020.
  6. T. Melia, “Decomposition of nitric oxide at elevated pressures”, Journal of Inorganic and Nuclear Chemistry, vol. 27, pp. 95-98, 1965.

Related


This entry was posted on Monday, August 25th, 2025 at 5:02 pm and is filed under Interesting chemistry. You can follow any responses to this entry through the RSS 2.0 feed.

You can leave a response, or trackback from your own site.



Source link

Bond dimer Hydrogenating Mysterious nitric oxide triple
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Chemistry

Molecules of the year 2025: Cyclo[48]carbon and others – the onset of bond alternation and the Raman Activity Spectrum.

January 1, 2026
Chemistry

Amorphous/crystalline heterogeneous interface synergizing with in-situ generated dual Cl –repelling layers to realize ultrastable seawater oxidation

December 31, 2025
Chemistry

What are asteroids really made of? New analysis brings space mining closer to reality

December 29, 2025
Chemistry

Structure and properties of ozone-induced Schiff-base crosslinked starch-chitosan complex under ozone duration

December 28, 2025
Chemistry

The viruses behind colds and flu

December 26, 2025
Chemistry

Au-pseudocarbyne – a unusual example of a twelve coordination by carbon.

December 25, 2025
View 4 Comments

4 Comments

  1. Walter3177
    Walter3177 on September 1, 2025 4:37 pm

    https://shorturl.fm/wORPt

    Log in to Reply
  2. Michael708
    Michael708 on September 1, 2025 9:10 pm

    https://shorturl.fm/Y4t82

    Log in to Reply
  3. Atticus1080
    Atticus1080 on September 2, 2025 3:36 am

    https://shorturl.fm/gSosb

    Log in to Reply
  4. Josiah4625
    Josiah4625 on September 2, 2025 4:42 am

    https://shorturl.fm/lT2t4

    Log in to Reply
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202555 Views

Improve your speech with immersive lessons!

May 28, 202548 Views

Hannah’s Spring Semester in Cannes

May 28, 202544 Views

Why Are Teachers Burned Out but Still in Love With Their Jobs?

May 30, 202542 Views
Don't Miss

Learn How to Say “Happy Holidays” in Different Languages 

By adminDecember 30, 20250

306 Whether you’re celebrating at home or spending the season abroad, it can be fun…

Sabi’s Spring Semester in South Korea

December 27, 2025

Best Study Abroad Consultants in SR Nagar Hyderabad

December 24, 2025

Meet Four People Who Completed an Internship Abroad in Ireland 

December 23, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

MENA strengthens its role in global student mobility

January 2, 2026

Citing ChatGPT in APA and MLA

January 2, 2026

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.