Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Navigating Short-Staffed Days in Special Ed

January 7, 2026

Forget About Goals, Focus on Systems Instead

January 7, 2026

The Greek Mythology Family Tree: A Visual Guide Shows How Zeus, Athena, and the Ancient Gods Are Related

January 7, 2026
Facebook X (Twitter) Instagram
Wednesday, January 7
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Math»Growth rates of sequences governed by the squarefree properties of its translates
Math

Growth rates of sequences governed by the squarefree properties of its translates

adminBy adminDecember 9, 2025No Comments5 Mins Read3 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Growth rates of sequences governed by the squarefree properties of its translates
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Wouter van Doorn and I have uploaded to the arXiv our paper “Growth rates of sequences governed by the squarefree properties of its translates“. In this paper we answer a number of questions of Erdős} (Problem 1102 and Problem 1103 on the Erdős problem web site) regarding how quickly a sequence {A = \{a_1 < a_2 < \dots\}} of increasing natural numbers can grow if one constrains its translates {n+A} to interact with the set {\mathcal{SF} = \{1,2,3,5,6,7,10,\dots\}} of squarefree numbers in various ways. For instance, Erdős defined a sequence {A} to have “Property {P}” if each of its translates {n+A} only intersected {\mathcal{SF}} in finitely many points. Erdős believed this to be quite a restrictive condition on {A}, writing “Probably a sequence having property P must increase fairly fast, but I have no results in this direction.”. Perhaps surprisingly, we show that while these sequences must be of density zero, they can in fact grow arbitrary slowly in the sense that one can have {a_j \leq j f(j)} for all sufficiently large {j} and any specified function {f(j)} that tends to infinity as {j \rightarrow \infty}. For instance, one can find a sequence that grows like {O(j \log\log\log j)}. The density zero claim can be proven by a version of the Maier matrix method, and also follows from known moment estimates on the gaps between squarefree numbers; the latter claim is proven by a greedy construction in which one slowly imposes more and more congruence conditions on the sequence to ensure that various translates of the sequence stop being squarefree after a certain point.

Erdős also defined a somewhat complementary property {Q}, which asserts that for infinitely many {n}, all the elements {n+a} of {A} for {a \leq n} are square-free. Since the squarefree numbers themselves have density {6/\pi^2}, it is easy to see that a sequence with property {Q} must have (upper) density at most {6/\pi^2} (because it must be “admissible” in the sense of avoiding one residue class modulo {p^2} for each {p}). Erdős observed that any sufficiently rapidly growing (admissible) sequence would obey property {Q} but beyond that, Erdős writes “I have no precise information about the rate of increase a sequence having property Q must have.”. Our results in this direction may also be surprising: we show that there exist sequences with property {Q} with density exactly {6/\pi^2} (or equivalently, {a_j \sim \frac{\pi^2}{6} j}). This requires a recursive sieve construction, in which one starts with an initial scale {n} and finds a much larger number {n'} such that {n'+a} is squarefree for most of the squarefree numbers {a \leq n'} (and all of the squarefree numbers {a \leq n}). We quantify Erdős’s remark by showing that an (admissible) sequence will necessarily obey property {Q} once it grows significantly faster than {\exp( C j \log j)}, but need not obey this property if it only grows like {\exp(O(j^{1/2} \log^{1/2} j))}. This is achieved through further application of sieve methods.

A third property studied by Erdős is the property of having squarefree sums, so that {a_i + a_j} is squarefree for all {i,j}. Erdős writes, “In fact one can find a sequence which grows exponentially. Must such a sequence really increase so fast? I do not expect that there is such a sequence of polynomial growth.” Here our results are relatively weak: we can construct such a sequence that grows like {\exp(O(j \log j))}, but do not know if this is optimal; the best lower bound we can produce on the growth, coming from the large sieve, is {\gg j^{4/3}}. (Somewhat annoyingly, the precise form of the large sieve inequality we needed was not in the literature, so we have an appendix supplying it.) We suspect that further progress on this problem requires advances in inverse sieve theory.

A weaker property than squarefree sums (but stronger than property {Q}), referred to by Erdős as property {\overline{P}}, asserts that there are infinitely many {n} such that all elements of {n+A} (not just the small ones) are square-free. Here, the situation is close to, but not quite the same, as that for property {Q}; we show that sequences with property {\overline{P}} must have upper density strictly less than {6/\pi^2}, but can have density arbitrarily close to this value.

Finally, we looked at a further question of Erdős on the size of an admissible set {A}. Because the squarefree numbers are admissible, the maximum number {A(x)} of elements of an admissible set {A} up to {x} (OEIS A083544) is at least the number {|{\mathcal SF} \cap [x]|} of squarefree elements up to {x} (A013928). It was observed by Ruzsa that the former sequence is greater than the latter for infinitely many {x}. Erdős asked, “Probably this holds for all large x. It would be of some interest to estimate A(x) as accurately as possible.”

We are able to show

\displaystyle  \frac{\sqrt{x}}{\log x} \ll A(x) - \frac{6}{\pi^2} x \ll x^{4/5},

with the upper bound coming from the large sieve and the lower bound from a probabilistic construction. In contrast, a classical result of Walfisz shows that

\displaystyle  |{\mathcal SF} \cap [x]| - \frac{6}{\pi^2} x \ll x^{1/2} \exp(-c \log^{3/5} x / (\log\log x)^{1/5}).

Together, this implies that Erdős’s conjecture holds {A(x) > |{\mathcal SF} \cap [x]|} for all sufficiently large {x}. Numerically, it appears that in fact this conjecture holds for all {n>17}:

Growth rates of sequences governed by the squarefree properties of its translates

However, we do not currently have enough numerical data for the sequence {A(x)} to completely confirm the conjecture in all cases. This could potentially be a crowdsourced project (similar to the Erdős-Guy-Selfridge project reported on in this previous blog post).



Source link

governed Growth Properties Rates sequences squarefree translates
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Math

Conversion of Improper Fractions into Mixed Fractions |Solved Examples

January 7, 2026
Math

Equivalent Fractions |Definition & Examples|Three Equivalent Fractions

January 4, 2026
Math

5th Grade Playing with Numbers Worksheet |Factors, Multiples, HCF, LCM

January 1, 2026
Math

Wolfram & Raspberry Pi 5: Neural Networks, Image Processing and Physics Simulations

December 30, 2025
Chemistry

Structure and properties of ozone-induced Schiff-base crosslinked starch-chitosan complex under ozone duration

December 28, 2025
Math

Word Problems on H.C.F | H.C.F. Word Problems

December 28, 2025
Add A Comment
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202555 Views

Improve your speech with immersive lessons!

May 28, 202550 Views

Hannah’s Spring Semester in Cannes

May 28, 202546 Views

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 202542 Views
Don't Miss

Meet 4 People Who Did an Internship in France with AIFS Abroad

By adminJanuary 7, 20260

26 Living and gaining professional experience in France is the stuff of dreams for many…

Top USA Education Consultants in Hyderabad

January 4, 2026

Claire’s Semester Abroad in Dublin, Ireland

January 3, 2026

Learn How to Say “Happy Holidays” in Different Languages 

December 30, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

Navigating Short-Staffed Days in Special Ed

January 7, 2026

Forget About Goals, Focus on Systems Instead

January 7, 2026

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.