Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

University of Virginia President Resigns After Trump’s Demands

June 28, 2025

X-ray boosting fabric could make mammograms less painful

June 28, 2025

Wolfram Education Programs for Middle School, High School and Beyond—Wolfram Blog

June 28, 2025
Facebook X (Twitter) Instagram
Saturday, June 28
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Dynamic model captures loop flexibility in swine virus drug design
Chemistry

Dynamic model captures loop flexibility in swine virus drug design

adminBy adminJune 28, 2025No Comments2 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Dynamic model captures loop flexibility in swine virus drug design
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Beyond the crystal: Capturing loop flexibility in PRRSV drug design
Credit: The Journal of Physical Chemistry Letters (2025). DOI: 10.1021/acs.jpclett.5c01528

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to devastate the global swine industry, yet the structural basis of how small molecules block its entry into host cells remains unclear. Researchers at the University of Tsukuba and Mahidol University developed a refined model of the PRRSV receptor domain CD163-SRCR5 using state-of-the-art computational approaches, offering new avenues for rational drug design.

While traditional drug discovery often relies on static crystal structures, many biologically important proteins, including the scavenger receptor CD163-SRCR5, contain flexible loop regions poorly captured by crystallography. These loops are critical for recognizing ligands and viral proteins, making them challenging yet attractive drug targets.

In their new study published in The Journal of Physical Chemistry Letters, the researchers used molecular dynamics (MD) simulations, ensemble docking, and fragment molecular orbital calculations to generate a dynamic, physiologically relevant structural model of the CD163-SRCR5 domain.

The MD-refined model, designated p5-343, revealed a novel groove-like pocket not visible in the crystal structure, enabling more accurate prediction of small-molecule binding. The team conducted virtual screening of a repurposing compound library and identified baicalin, a flavonoid with known antiviral properties, as the top candidate. Baicalin showed stable binding and favorable energetics, consistent with previous experimental reports.

This flexible-receptor docking framework is not limited to PRRSV. It can be broadly applied to other therapeutically relevant systems with intrinsically disordered regions or loop-dominated binding interfaces, such as viral proteins, membrane receptors, and host-pathogen complexes. These findings offer a powerful computational solution for structure-based drug discovery beyond conventional targets.

More information:
Prawit Thitayanuwat et al, Mechanistic Insights into PRRSV Inhibition through CD163–SRCR5 Blockade by PRRSV/CD163-IN-1, The Journal of Physical Chemistry Letters (2025). DOI: 10.1021/acs.jpclett.5c01528

Provided by
University of Tsukuba

Citation:
Beyond the crystal: Dynamic model captures loop flexibility in swine virus drug design (2025, June 27)
retrieved 28 June 2025
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Captures Design drug Dynamic flexibility loop Materials Model Nanotech Physics Physics News Science Science news swine Technology Technology News virus
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
yhhifa9
admin
  • Website

Related Posts

Science

X-ray boosting fabric could make mammograms less painful

June 28, 2025
Chemistry

Estructuras de resonancia | ChemTalk

June 27, 2025
Educational Technology

3 Key Concepts Education Leaders Need To Understand About Technology

June 27, 2025
Chemistry

Sustainable gold extraction from ore and electronic waste

June 26, 2025
Educational Technology

AI for Teaching and Learning: Human Approaches for Technology Integration

June 26, 2025
Physics

Statistical physics reveals how ‘condenser’ occupations limit worker mobility – Physics World

June 25, 2025
Add A Comment
Leave A Reply Cancel Reply

Top Posts

10 Student Engagement Strategies That Empower Learners –

May 28, 20253 Views

Do You Hear What I Hear? Audio Illusions and Misinformation

May 28, 20253 Views

Improve your speech with immersive lessons!

May 28, 20252 Views

Arabic poetry, with a special focus on Palestine – Global Studies Blog

May 28, 20252 Views
Don't Miss

Open Access Week 2023–South Asia Resources

By adminJune 28, 20250

Open Access Week 2023 To suggest new content for SAOA, use the suggestion form. Source…

Best Abroad Study Consultants Near Me

June 27, 2025

Hayley’s Spring Semester in Maynooth

June 26, 2025

Study MD MS in UK Without PLAB

June 23, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

University of Virginia President Resigns After Trump’s Demands

June 28, 2025

X-ray boosting fabric could make mammograms less painful

June 28, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.