Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

key headlines from East and Southeast Asia

January 10, 2026

Visuals in Adobe Captivate – eLearning

January 10, 2026

Using Google Gemini in Gmail for Educators

January 10, 2026
Facebook X (Twitter) Instagram
Saturday, January 10
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Direct detection of SABRE-SHEATH hyperpolarization and spin-lattice relaxation of [1-13C]pyruvate
Chemistry

Direct detection of SABRE-SHEATH hyperpolarization and spin-lattice relaxation of [1-13C]pyruvate

adminBy adminDecember 21, 2025No Comments7 Mins Read3 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Direct detection of SABRE-SHEATH hyperpolarization and spin-lattice relaxation of [1-13C]pyruvate
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Hashemi, R., Bradley, W. & Lisanti, C.MRI: The Basics. The Basics Series (Lippincott Williams & Wilkins, 2010).

  • Grist, J. T. et al. Hyperpolarized 13C MRI: A novel approach for probing cerebral metabolism in health and neurological disease. J. Cereb. Blood Flow. Metab. 40, 1137–1147 (2020).


    Google Scholar
     

  • Marcone, M. F. et al. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int. 51, 729–747 (2013).


    Google Scholar
     

  • Patching, S. NMR-active nuclei for biological and biomedical applications. J. Diagn. Imaging Ther. 3, 7–48 (2016).


    Google Scholar
     

  • Abragam, A.The Principles of Nuclear Magnetism (Oxford University Press, 1983).

  • Aime, S., Castelli, D. D., Crich, S. G., Gianolio, E. & Terreno, E. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc. Chem. Res. 42, 822–831 (2009).


    Google Scholar
     

  • Lazarev, B. & Schubnikov, L. Magnetic moment of a proton. Phys. Zeitsch Der Sow. 11, 445–57 (1937).


    Google Scholar
     

  • Farra, T. Pulsed and Fourier transform NMR spectroscopy. Anal. Chem. 42, 109A–112A (1970).


    Google Scholar
     

  • Levitt, M. H.Spin dynamics: basics of nuclear magnetic resonance (Wiley, 2008).

  • Kanelis, V., Forman-Kay, J. D. & Kay, L. E. Multidimensional NMR methods for protein structure determination. IUBMB Life 52, 291–302 (2001).


    Google Scholar
     

  • Bydder, G., Hajnal, J. & Young, I. MRI: use of the inversion recovery pulse sequence. Clin. Radiol. 53, 159–176 (1998).


    Google Scholar
     

  • Freeman, R. & Hill, H. Fourier transform study of NMR spin–lattice relaxation by “progressive saturation”. J. Chem. Phys. 54, 3367–3377 (1971).


    Google Scholar
     

  • Chattergoon, N., Martínez-Santiesteban, F., Handler, W. B., Ardenkjær-Larsen, J. H. & Scholl, T. J. Field dependence of T1 for hyperpolarized [1-13C]pyruvate. Contrast Media Mol. Imaging 8, 57–62 (2013).


    Google Scholar
     

  • Eisenschmid, T. C. et al. Para hydrogen induced polarization in hydrogenation reactions. J. Am. Chem. Soc. 109, 8089–8091 (1987).


    Google Scholar
     

  • Abragam, A. & Goldman, M. Principles of dynamic nuclear polarisation. Rep. Prog. Phys. 41, 395 (1978).


    Google Scholar
     

  • Borghini, M., De Boer, W. & Morimoto, K. Nuclear dynamic polarization by resolved solid-state effect and thermal mixing with an electron spin-spin interaction reservoir. Phys. Lett. A 48, 244–246 (1974).


    Google Scholar
     

  • Adams, R. W. et al. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323, 1708–1711 (2009).


    Google Scholar
     

  • Truong, M. L. et al. 15N hyperpolarization by reversible exchange using SABRE-SHEATH. J. Phys. Chem. C. 119, 8786–8797 (2015).


    Google Scholar
     

  • Pravdivtsev, A. N. et al. Light-sabre hyperpolarizes 1-13C-pyruvate continuously without magnetic field cycling. J. Phys. Chem. C. 127, 6744–6753 (2023).


    Google Scholar
     

  • Tickner, B. J. et al. Optimisation of pyruvate hyperpolarisation using SABRE by tuning the active magnetisation transfer catalyst. Catal. Sci. Technol. 10, 1343–1355 (2020).


    Google Scholar
     

  • TomHon, P. et al. Temperature cycling enables efficient 13C SABRE-SHEATH hyperpolarization and imaging of [1-13C]-pyruvate. J. Am. Chem. Soc. 144, 282–287 (2021).


    Google Scholar
     

  • Theis, T. et al. Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization. J. Am. Chem. Soc. 137, 1404–1407 (2015).


    Google Scholar
     

  • Fekete, M., Ahwal, F. & Duckett, S. B. Remarkable levels of 15N polarization delivered through SABRE into unlabeled pyridine, pyrazine, or metronidazole enable single scan NMR quantification at the mM level. J. Phys. Chem. B 124, 4573–4580 (2020).


    Google Scholar
     

  • Iali, W. et al. Hyperpolarising pyruvate through signal amplification by reversible exchange (SABRE). Angew. Chem. Int. Ed. 58, 10271–10275 (2019).


    Google Scholar
     

  • Cowley, M. J. et al. Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen. J. Am. Chem. Soc. 133, 6134–6137 (2011).


    Google Scholar
     

  • Assaf, C. D. et al. J coupling constants of J. Phys. Chem. Lett. 15, 1195–1203 (2024).

  • Pravdivtsev, A. N., Yurkovskaya, A. V., Vieth, H.-M., Ivanov, K. L. & Kaptein, R. Level anti-crossings are a key factor for understanding para-hydrogen-induced hyperpolarization in SABRE experiments. ChemPhysChem 14, 3327–3331 (2013).


    Google Scholar
     

  • Myers, W. et al. Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T. J. Magn. Reson. 186, 182–192 (2007).


    Google Scholar
     

  • Myers, J. Z., Buckenmaier, K., Pravdivtsev, A. N., Plaumann, M. & Körber, R. Characterization of nuclear magnetism at ultralow and zero field using SQUIDs. IEEE Trans. Appl. Supercond. 35, 1–5 (2025).

  • Cohen-Tannoudji, C., DuPont-Roc, J., Haroche, S. & Laloë, F. Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas. Phys. Rev. Lett. 22, 758–760 (1969).


    Google Scholar
     

  • Eills, J., Mitchell, M. W., Rius, I. M. & Tayler, M. C. D. Live magnetic observation of parahydrogen hyperpolarization dynamics. Proc. Natl. Acad. Sci. 121, e2410209121 (2024).

  • Mouloudakis, K. et al. Real-time polarimetry of hyperpolarized 13C nuclear spins using an atomic magnetometer. J. Phys. Chem. Lett. 14, 1192–1197 (2023).


    Google Scholar
     

  • Buckenmaier, K. et al. Multiple quantum coherences hyperpolarized at ultra-low fields. ChemPhysChem 20, 2823–2829 (2019).


    Google Scholar
     

  • Peters, J. P., Assaf, C. D., Hövener, J.-B. & Pravdivtsev, A. N. Compact magnetic field cycling system with the range from nT to 9.4 T exemplified with 13C relaxation dispersion and SABRE-SHEATH hyperpolarization (2025).

  • Buckenmaier, K. et al. Indirect zero-field nuclear magnetic resonance spectroscopy. Anal. Chem. 97, 17336–17344 (2025).

  • Myers, J. Z. et al. Zero to ultralow magnetic field NMR of [1-13C] pyruvate and [2-13C] pyruvate enabled by SQUID sensors and hyperpolarization. Phys. Rev. B 109, 184443 (2024).


    Google Scholar
     

  • Adams, R. W., Duckett, S. B., Green, R. A., Williamson, D. C. & Green, G. G. R. A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization. J. Chem. Phys. 131, 194505 (2009).


    Google Scholar
     

  • Hövener, J.-B., Knecht, S., Schwaderlapp, N., Hennig, J. & von Elverfeldt, D. Continuous re-hyperpolarization of nuclear spins using parahydrogen: Theory and experiment. ChemPhysChem 15, 2451–2457 (2014).


    Google Scholar
     

  • Natterer, J. & Bargon, J. Parahydrogen induced polarization. Prog. Nucl. Magn. Reson. Spectrosc. 31, 293–315 (1997).


    Google Scholar
     

  • Pravdivtsev, A. N., Yurkovskaya, A. V., Ivanov, K. L. & Vieth, H.-M. Importance of polarization transfer in reaction products for interpreting and analyzing CIDNP at low magnetic fields. J. Magn. Reson. 254, 35–47 (2015).


    Google Scholar
     

  • Pravdivtsev, A. N. & Hövener, J.-B. Coherent polarization transfer in chemically exchanging systems. Phys. Chem. Chem. Phys. 22, 8963–8972 (2020).


    Google Scholar
     

  • Lindale, J. R. et al. Multi-axis fields boost SABRE hyperpolarization. Proc. Natl. Acad. Sci. 121 (2024).

  • Pravdivtsev, A. N. et al. Coherent evolution of signal amplification by reversible exchange in two alternating fields (Alt-SABRE). ChemPhysChem 22, 2381–2386 (2021).


    Google Scholar
     

  • Lindale, J. R. et al. Unveiling coherently driven hyperpolarization dynamics in signal amplification by reversible exchange. Nat. Commun. 10, 395 (2019).


    Google Scholar
     

  • Eriksson, S. L., Lindale, J. R., Li, X. & Warren, W. S. Improving SABRE hyperpolarization with highly nonintuitive pulse sequences: Moving beyond avoided crossings to describe dynamics. Sci. Adv. 8, eabl3708 (2022).

  • Brown, E. et al. Photo-ejected ligands hyperpolarized by parahydrogen in reversible exchange. Chem. Commun. 61, 4674–4677 (2025).

  • Vázquez-Serrano, L. D., Owens, B. T. & Buriak, J. M. Catalytic olefin hydrogenation using N-heterocyclic carbene–phosphine complexes of iridium. Chem. Commun. 21, 2518–2519 (2002).

  • Voigt, J., Knappe-Grüneberg, S., Schnabel, A., Körber, R. & Burghoff, M. Measures to reduce low residual field and field gradient inside a magnetically shielded room by a factor of more than 10. Metrol. Meas. Syst. 21, 239–248 (2013).


    Google Scholar
     

  • Storm, J.-H., Hömmen, P., Drung, D. & Körber, R. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device. Appl. Phys. Lett. 110, 072603 (2017).


    Google Scholar
     

  • Hömmen, P.Realization of current density imaging using ultra-low-field MRI. Ph.D. thesis, Technische Universität Ilmenau (2021). Dissertation, Technische Universität Ilmenau, (2021).



  • Source link

    113Cpyruvate Chemistry/Food Science Detection direct General hyperpolarization relaxation SABRESHEATH Solution-state NMR spinlattice
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
    thanhphuchoang09
    admin
    • Website

    Related Posts

    Chemistry

    A simple chemistry trick could end forever plastic

    January 10, 2026
    Chemistry

    Photo-deposition of dual Ni(OH)2 and NixP cocatalysts on ZnIn2S4/ZnS for efficient photocatalytic hydrogen production

    January 9, 2026
    Chemistry

    Molecules of the year 2025: Benzene-busting inverted sandwich.

    January 7, 2026
    Chemistry

    Mild Hydrolysis of PET and Electrochemical Energy Recovery via Multifunctional Polyoxometalate Catalysts

    January 6, 2026
    Chemistry

    Beyond silicon: These shape-shifting molecules could be the future of AI hardware

    January 4, 2026
    Chemistry

    The membrane transition strongly enhances biopolymer condensation through prewetting

    January 3, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Top Posts

    Announcing the All-New EdTechTeacher Summer Learning Pass!

    May 31, 202555 Views

    Improve your speech with immersive lessons!

    May 28, 202551 Views

    Hannah’s Spring Semester in Cannes

    May 28, 202546 Views

    Weekly Student News Quiz: National Guard, Taylor Swift, Comets

    October 13, 202545 Views
    Don't Miss

    Best UK Study Abroad Consultancy in Ameerpet

    By adminJanuary 8, 20260

    Choosing the right consultancy can save you time, effort, and unnecessary stress. Global Six Sigma…

    Meet 4 People Who Did an Internship in France with AIFS Abroad

    January 7, 2026

    Top USA Education Consultants in Hyderabad

    January 4, 2026

    Claire’s Semester Abroad in Dublin, Ireland

    January 3, 2026
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us
    About Us

    Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

    Our Picks

    key headlines from East and Southeast Asia

    January 10, 2026

    Visuals in Adobe Captivate – eLearning

    January 10, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    Copyright© 2025 Bkngpnarnaul All Rights Reserved.
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.