Hashemi, R., Bradley, W. & Lisanti, C.MRI: The Basics. The Basics Series (Lippincott Williams & Wilkins, 2010).
Grist, J. T. et al. Hyperpolarized 13C MRI: A novel approach for probing cerebral metabolism in health and neurological disease. J. Cereb. Blood Flow. Metab. 40, 1137–1147 (2020).
Marcone, M. F. et al. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int. 51, 729–747 (2013).
Patching, S. NMR-active nuclei for biological and biomedical applications. J. Diagn. Imaging Ther. 3, 7–48 (2016).
Abragam, A.The Principles of Nuclear Magnetism (Oxford University Press, 1983).
Aime, S., Castelli, D. D., Crich, S. G., Gianolio, E. & Terreno, E. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc. Chem. Res. 42, 822–831 (2009).
Lazarev, B. & Schubnikov, L. Magnetic moment of a proton. Phys. Zeitsch Der Sow. 11, 445–57 (1937).
Farra, T. Pulsed and Fourier transform NMR spectroscopy. Anal. Chem. 42, 109A–112A (1970).
Levitt, M. H.Spin dynamics: basics of nuclear magnetic resonance (Wiley, 2008).
Kanelis, V., Forman-Kay, J. D. & Kay, L. E. Multidimensional NMR methods for protein structure determination. IUBMB Life 52, 291–302 (2001).
Bydder, G., Hajnal, J. & Young, I. MRI: use of the inversion recovery pulse sequence. Clin. Radiol. 53, 159–176 (1998).
Freeman, R. & Hill, H. Fourier transform study of NMR spin–lattice relaxation by “progressive saturation”. J. Chem. Phys. 54, 3367–3377 (1971).
Chattergoon, N., Martínez-Santiesteban, F., Handler, W. B., Ardenkjær-Larsen, J. H. & Scholl, T. J. Field dependence of T1 for hyperpolarized [1-13C]pyruvate. Contrast Media Mol. Imaging 8, 57–62 (2013).
Eisenschmid, T. C. et al. Para hydrogen induced polarization in hydrogenation reactions. J. Am. Chem. Soc. 109, 8089–8091 (1987).
Abragam, A. & Goldman, M. Principles of dynamic nuclear polarisation. Rep. Prog. Phys. 41, 395 (1978).
Borghini, M., De Boer, W. & Morimoto, K. Nuclear dynamic polarization by resolved solid-state effect and thermal mixing with an electron spin-spin interaction reservoir. Phys. Lett. A 48, 244–246 (1974).
Adams, R. W. et al. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323, 1708–1711 (2009).
Truong, M. L. et al. 15N hyperpolarization by reversible exchange using SABRE-SHEATH. J. Phys. Chem. C. 119, 8786–8797 (2015).
Pravdivtsev, A. N. et al. Light-sabre hyperpolarizes 1-13C-pyruvate continuously without magnetic field cycling. J. Phys. Chem. C. 127, 6744–6753 (2023).
Tickner, B. J. et al. Optimisation of pyruvate hyperpolarisation using SABRE by tuning the active magnetisation transfer catalyst. Catal. Sci. Technol. 10, 1343–1355 (2020).
TomHon, P. et al. Temperature cycling enables efficient 13C SABRE-SHEATH hyperpolarization and imaging of [1-13C]-pyruvate. J. Am. Chem. Soc. 144, 282–287 (2021).
Theis, T. et al. Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization. J. Am. Chem. Soc. 137, 1404–1407 (2015).
Fekete, M., Ahwal, F. & Duckett, S. B. Remarkable levels of 15N polarization delivered through SABRE into unlabeled pyridine, pyrazine, or metronidazole enable single scan NMR quantification at the mM level. J. Phys. Chem. B 124, 4573–4580 (2020).
Iali, W. et al. Hyperpolarising pyruvate through signal amplification by reversible exchange (SABRE). Angew. Chem. Int. Ed. 58, 10271–10275 (2019).
Cowley, M. J. et al. Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen. J. Am. Chem. Soc. 133, 6134–6137 (2011).
Assaf, C. D. et al. J coupling constants of J. Phys. Chem. Lett. 15, 1195–1203 (2024).
Pravdivtsev, A. N., Yurkovskaya, A. V., Vieth, H.-M., Ivanov, K. L. & Kaptein, R. Level anti-crossings are a key factor for understanding para-hydrogen-induced hyperpolarization in SABRE experiments. ChemPhysChem 14, 3327–3331 (2013).
Myers, W. et al. Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T. J. Magn. Reson. 186, 182–192 (2007).
Myers, J. Z., Buckenmaier, K., Pravdivtsev, A. N., Plaumann, M. & Körber, R. Characterization of nuclear magnetism at ultralow and zero field using SQUIDs. IEEE Trans. Appl. Supercond. 35, 1–5 (2025).
Cohen-Tannoudji, C., DuPont-Roc, J., Haroche, S. & Laloë, F. Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas. Phys. Rev. Lett. 22, 758–760 (1969).
Eills, J., Mitchell, M. W., Rius, I. M. & Tayler, M. C. D. Live magnetic observation of parahydrogen hyperpolarization dynamics. Proc. Natl. Acad. Sci. 121, e2410209121 (2024).
Mouloudakis, K. et al. Real-time polarimetry of hyperpolarized 13C nuclear spins using an atomic magnetometer. J. Phys. Chem. Lett. 14, 1192–1197 (2023).
Buckenmaier, K. et al. Multiple quantum coherences hyperpolarized at ultra-low fields. ChemPhysChem 20, 2823–2829 (2019).
Peters, J. P., Assaf, C. D., Hövener, J.-B. & Pravdivtsev, A. N. Compact magnetic field cycling system with the range from nT to 9.4 T exemplified with 13C relaxation dispersion and SABRE-SHEATH hyperpolarization (2025).
Buckenmaier, K. et al. Indirect zero-field nuclear magnetic resonance spectroscopy. Anal. Chem. 97, 17336–17344 (2025).
Myers, J. Z. et al. Zero to ultralow magnetic field NMR of [1-13C] pyruvate and [2-13C] pyruvate enabled by SQUID sensors and hyperpolarization. Phys. Rev. B 109, 184443 (2024).
Adams, R. W., Duckett, S. B., Green, R. A., Williamson, D. C. & Green, G. G. R. A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization. J. Chem. Phys. 131, 194505 (2009).
Hövener, J.-B., Knecht, S., Schwaderlapp, N., Hennig, J. & von Elverfeldt, D. Continuous re-hyperpolarization of nuclear spins using parahydrogen: Theory and experiment. ChemPhysChem 15, 2451–2457 (2014).
Natterer, J. & Bargon, J. Parahydrogen induced polarization. Prog. Nucl. Magn. Reson. Spectrosc. 31, 293–315 (1997).
Pravdivtsev, A. N., Yurkovskaya, A. V., Ivanov, K. L. & Vieth, H.-M. Importance of polarization transfer in reaction products for interpreting and analyzing CIDNP at low magnetic fields. J. Magn. Reson. 254, 35–47 (2015).
Pravdivtsev, A. N. & Hövener, J.-B. Coherent polarization transfer in chemically exchanging systems. Phys. Chem. Chem. Phys. 22, 8963–8972 (2020).
Lindale, J. R. et al. Multi-axis fields boost SABRE hyperpolarization. Proc. Natl. Acad. Sci. 121 (2024).
Pravdivtsev, A. N. et al. Coherent evolution of signal amplification by reversible exchange in two alternating fields (Alt-SABRE). ChemPhysChem 22, 2381–2386 (2021).
Lindale, J. R. et al. Unveiling coherently driven hyperpolarization dynamics in signal amplification by reversible exchange. Nat. Commun. 10, 395 (2019).
Eriksson, S. L., Lindale, J. R., Li, X. & Warren, W. S. Improving SABRE hyperpolarization with highly nonintuitive pulse sequences: Moving beyond avoided crossings to describe dynamics. Sci. Adv. 8, eabl3708 (2022).
Brown, E. et al. Photo-ejected ligands hyperpolarized by parahydrogen in reversible exchange. Chem. Commun. 61, 4674–4677 (2025).
Vázquez-Serrano, L. D., Owens, B. T. & Buriak, J. M. Catalytic olefin hydrogenation using N-heterocyclic carbene–phosphine complexes of iridium. Chem. Commun. 21, 2518–2519 (2002).
Voigt, J., Knappe-Grüneberg, S., Schnabel, A., Körber, R. & Burghoff, M. Measures to reduce low residual field and field gradient inside a magnetically shielded room by a factor of more than 10. Metrol. Meas. Syst. 21, 239–248 (2013).
Storm, J.-H., Hömmen, P., Drung, D. & Körber, R. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device. Appl. Phys. Lett. 110, 072603 (2017).
Hömmen, P.Realization of current density imaging using ultra-low-field MRI. Ph.D. thesis, Technische Universität Ilmenau (2021). Dissertation, Technische Universität Ilmenau, (2021).
![Direct detection of SABRE-SHEATH hyperpolarization and spin-lattice relaxation of [1-13C]pyruvate Direct detection of SABRE-SHEATH hyperpolarization and spin-lattice relaxation of [1-13C]pyruvate](https://i3.wp.com/media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs42004-025-01851-1/MediaObjects/42004_2025_1851_Figa_HTML.png?w=1024&resize=1024,1024&ssl=1)