Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

5 Reasons To Subscribe to Tech & Learning

January 8, 2026

Best UK Study Abroad Consultancy in Ameerpet

January 8, 2026

Retrieval Practice Examples: 5 Tools Teachers Can Use

January 8, 2026
Facebook X (Twitter) Instagram
Thursday, January 8
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Math»Decomposing a factorial into large factors (second version)
Math

Decomposing a factorial into large factors (second version)

adminBy adminJune 9, 2025No Comments2 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Decomposing a factorial into large factors (second version)
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Boris Alexeev, Evan Conway, Matthieu Rosenfeld, Andrew Sutherland, Markus Uhr, Kevin Ventullo, and I have uploaded to the arXiv a second version of our paper “Decomposing a factorial into large factors“. This is a completely rewritten and expanded version of a previous paper of the same name. Thanks to many additional theoretical and numerical contributors from the other coauthors, we now have much more precise control on the main quantity {t(N)} studied in this paper, allowing us to settle all the previous conjectures about this quantity in the literature.

As discussed in the previous post, {t(N)} denotes the largest integer {t} such that the factorial {N!} can be expressed as a product of {N} factors, each of which is at least {t}. Computing {t(N)} is a special case of the bin covering problem, which is known to be NP-hard in general; and prior to our work, {t(N)} was only computed for {N \leq 599}; we have been able to compute {t(N)} for all {N \leq 10000}. In fact, we can get surprisingly sharp upper and lower bounds on {t(N)} for much larger {N}, with a precise asymptotic

\displaystyle \frac{t(N)}{N} = \frac{1}{e} - \frac{c_0}{\log N} - \frac{O(1)}{\log^{1+c} N}

for an explicit constant {c_0 = 0.30441901\dots}, which we conjecture to be improvable to

\displaystyle \frac{t(N)}{N} = \frac{1}{e} - \frac{c_0}{\log N} - \frac{c_1+o(1)}{\log^{2} N}

for an explicit constant {c_1 = 0.75554808\dots}: … For instance, we can demonstrate numerically that

\displaystyle 0 \leq t(9 \times 10^8) - 316560601 \leq 113.

As a consequence of this precision, we can verify several conjectures of Guy and Selfridge, namely

Guy and Selfridge also claimed that one can establish {t(N) \geq N/4} for all large {N} purely by rearranging factors of {2} and {3} from the standard factorization {1 \times 2 \times \dots \times N} of {N!}, but surprisingly we found that this claim (barely) fails for all {N > 26244}:

The accuracy of our bounds comes from several techniques:

To me, the biggest surprise was just how stunningly accurate the linear programming methods were; the very large number of repeated prime factors here actually make this discrete problem behave rather like a continuous one.



Source link

Decomposing factorial factors Large version
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Math

Mathletics Earns Pedagogical Quality Certification from EdTech Impact

January 8, 2026
Math

Conversion of Improper Fractions into Mixed Fractions |Solved Examples

January 7, 2026
Math

Equivalent Fractions |Definition & Examples|Three Equivalent Fractions

January 4, 2026
Math

5th Grade Playing with Numbers Worksheet |Factors, Multiples, HCF, LCM

January 1, 2026
Math

Wolfram & Raspberry Pi 5: Neural Networks, Image Processing and Physics Simulations

December 30, 2025
Math

Word Problems on H.C.F | H.C.F. Word Problems

December 28, 2025
Add A Comment
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202555 Views

Improve your speech with immersive lessons!

May 28, 202550 Views

Hannah’s Spring Semester in Cannes

May 28, 202546 Views

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 202545 Views
Don't Miss

Best UK Study Abroad Consultancy in Ameerpet

By adminJanuary 8, 20260

Choosing the right consultancy can save you time, effort, and unnecessary stress. Global Six Sigma…

Meet 4 People Who Did an Internship in France with AIFS Abroad

January 7, 2026

Top USA Education Consultants in Hyderabad

January 4, 2026

Claire’s Semester Abroad in Dublin, Ireland

January 3, 2026
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

5 Reasons To Subscribe to Tech & Learning

January 8, 2026

Best UK Study Abroad Consultancy in Ameerpet

January 8, 2026

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.