Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Trump Fires More Education Dept. Employees

October 11, 2025

What Do Multidisciplinary Care Teams Do

October 11, 2025

Classroom Tour: Elementary Resource Room

October 11, 2025
Facebook X (Twitter) Instagram
Saturday, October 11
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Math»Decomposing a factorial into large factors (second version)
Math

Decomposing a factorial into large factors (second version)

adminBy adminJune 9, 2025No Comments2 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Decomposing a factorial into large factors (second version)
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Boris Alexeev, Evan Conway, Matthieu Rosenfeld, Andrew Sutherland, Markus Uhr, Kevin Ventullo, and I have uploaded to the arXiv a second version of our paper “Decomposing a factorial into large factors“. This is a completely rewritten and expanded version of a previous paper of the same name. Thanks to many additional theoretical and numerical contributors from the other coauthors, we now have much more precise control on the main quantity {t(N)} studied in this paper, allowing us to settle all the previous conjectures about this quantity in the literature.

As discussed in the previous post, {t(N)} denotes the largest integer {t} such that the factorial {N!} can be expressed as a product of {N} factors, each of which is at least {t}. Computing {t(N)} is a special case of the bin covering problem, which is known to be NP-hard in general; and prior to our work, {t(N)} was only computed for {N \leq 599}; we have been able to compute {t(N)} for all {N \leq 10000}. In fact, we can get surprisingly sharp upper and lower bounds on {t(N)} for much larger {N}, with a precise asymptotic

\displaystyle \frac{t(N)}{N} = \frac{1}{e} - \frac{c_0}{\log N} - \frac{O(1)}{\log^{1+c} N}

for an explicit constant {c_0 = 0.30441901\dots}, which we conjecture to be improvable to

\displaystyle \frac{t(N)}{N} = \frac{1}{e} - \frac{c_0}{\log N} - \frac{c_1+o(1)}{\log^{2} N}

for an explicit constant {c_1 = 0.75554808\dots}: … For instance, we can demonstrate numerically that

\displaystyle 0 \leq t(9 \times 10^8) - 316560601 \leq 113.

As a consequence of this precision, we can verify several conjectures of Guy and Selfridge, namely

Guy and Selfridge also claimed that one can establish {t(N) \geq N/4} for all large {N} purely by rearranging factors of {2} and {3} from the standard factorization {1 \times 2 \times \dots \times N} of {N!}, but surprisingly we found that this claim (barely) fails for all {N > 26244}:

The accuracy of our bounds comes from several techniques:

To me, the biggest surprise was just how stunningly accurate the linear programming methods were; the very large number of repeated prime factors here actually make this discrete problem behave rather like a continuous one.



Source link

Decomposing factorial factors Large version
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
yhhifa9
admin
  • Website

Related Posts

Math

Number of Days in a Year | Days Of The Year | Leap Year

October 11, 2025
Math

Addition of Whole Numbers Worksheet | Free Addition Worksheets

October 8, 2025
Math

13 Times Table | Read and Write Multiplication Table of 13|Times Table

October 5, 2025
Math

13 Times Table Multiplication Chart |Exercise on 13 Times Table |Video

October 2, 2025
Math

Conversion of Minutes into Seconds

September 29, 2025
Math

Properties of Whole Numbers | Closure Property

September 26, 2025
Add A Comment
Leave A Reply Cancel Reply

Top Posts

2024 in math puzzles. – Math with Bad Drawings

July 22, 202528 Views

Improve your speech with immersive lessons!

May 28, 202528 Views

Hannah’s Spring Semester in Cannes

May 28, 202528 Views

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202527 Views
Don't Miss

Maya’s Summer Internship in London

By adminOctober 9, 20254

63 Eager to follow in the footsteps of a college student who interned abroad in…

Meet College Students Who Studied Abroad in Costa Rica

October 5, 2025

Best Fall Foliage Around the World

October 1, 2025

AIFS Abroad Student Spotlight: Hannah’s Spring in Budapest

September 27, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

Trump Fires More Education Dept. Employees

October 11, 2025

What Do Multidisciplinary Care Teams Do

October 11, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.