Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

K-12 Gamification: A Guide For Publishers

September 23, 2025

Can Plantar Fasciitis Cause Knee Pain? Know the Link

September 23, 2025

The Purpose of a Classroom Observation for Gathering Data

September 23, 2025
Facebook X (Twitter) Instagram
Tuesday, September 23
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Controlling edge active-sites by vulcanizing bimetallic hydroxide for boosting oxygen evolution reaction
Chemistry

Controlling edge active-sites by vulcanizing bimetallic hydroxide for boosting oxygen evolution reaction

adminBy adminJuly 29, 2025No Comments2 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Controlling edge active-sites by vulcanizing bimetallic hydroxide for boosting oxygen evolution reaction
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Sulfur-laden wastewater can be served as a valuable resource to synthesize transition metal sulfides (TMSs) electrocatalysts to address the sluggish kinetics of oxygen evolution reaction (OER) in water splitting, which is a significant issue for environmental and energy advancements. However, TMSs are beset with intrinsic constraints, particularly their prevalence of catalytically inert basal planes that impede their efficacy. To solve this issue, herein, CoNi-S/CoNi(OH)2 nanosheets on nickel foam (NF) was constructed employing sodium ethyl xanthate (synthesized using sulfur-containing wastewater) to partially vulcanize CoNi(OH)2 for improving OER performance. In-situ formed Co9S8-Ni3S2 on CoNi(OH)2 nanosheets provides high density edge active sites, compensating for inert basal planes. Due to the bridging effects of S2– and O2–, the electronic redistribution is conducive to form Ni3+, thereby facilitating the phase transformation from CoNi-S/CoNi(OH)2 into active S-containing CoNiOOH. Density functional theory calculation verifies that incorporating S into CoNi(OH)2 leads to rich edge-catalytic sites and modulates the adsorption/desorption of oxygen-containing intermediates, significantly reducing the energy barriers of potential-determining step during OER process. Additionally, the stability of CoNi-S/CoNi(OH)2 has been enhanced by the strengthened M-S (M=Co, Ni) bonds via the π donation of Mn+ with S2– and O2–. All these endow CoNi-S/CoNi(OH)2 the low overpotential of 295 mV at 20 mA cm–2 with a Tafel slope of 58 mV dec–1. This work presents a strategy for utilizing sulfur-containing wastewater in clean energy applications.


You have access to this article


Controlling edge active-sites by vulcanizing bimetallic hydroxide for boosting oxygen evolution reaction
Please wait while we load your content…


Something went wrong. Try again?



Source link

activesites bimetallic Boosting Controlling edge evolution hydroxide oxygen Reaction vulcanizing
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
yhhifa9
admin
  • Website

Related Posts

Chemistry

New methods and standardization in chemical forensics

September 23, 2025
Chemistry

Water Splitting | ChemTalk

September 22, 2025
Chemistry

Strategies for Enhancing Energy‑Level Matching in Perovskite Solar Cells: An Energy Flow Perspective

September 21, 2025
Chemistry

More on rescuing articles from a now defunct early pioneering example of an Internet journal.

September 20, 2025
Chemistry

Harvard’s salt trick could turn billions of tons of hair into eco-friendly materials

September 18, 2025
Chemistry

Tumour-specific STING agonist synthesis via a two-component prodrug system

September 17, 2025
Add A Comment
Leave A Reply Cancel Reply

Top Posts

2024 in math puzzles. – Math with Bad Drawings

July 22, 202521 Views

Testing Quantum Theory in Curved Spacetime

July 22, 202514 Views

How AI Is Helping Customer Support Teams Avoid Burnout

May 28, 202510 Views

Chemistry in the sunshine – in C&EN

August 9, 20258 Views
Don't Miss

Can I Use Financial Aid for a Study Abroad Program?

By adminSeptember 23, 20250

248 Are you wondering how to pay for study abroad? You’re not alone! Cost concerns…

What I Wish I Knew Before Starting University | Study in Ireland

September 22, 2025

Meet Four College Students Who Studied Abroad in England

September 19, 2025

Literary Gardens – Global Studies Blog

September 16, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

K-12 Gamification: A Guide For Publishers

September 23, 2025

Can Plantar Fasciitis Cause Knee Pain? Know the Link

September 23, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.