Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

K-12 Gamification: A Guide For Publishers

September 23, 2025

Can Plantar Fasciitis Cause Knee Pain? Know the Link

September 23, 2025

The Purpose of a Classroom Observation for Gathering Data

September 23, 2025
Facebook X (Twitter) Instagram
Tuesday, September 23
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Atom-Efficient Aldol Condensations via Magnetically Recyclable Nanoreactors: Sol-Gel Imprinting Enables Template-Switchable Triple-Selectivity
Chemistry

Atom-Efficient Aldol Condensations via Magnetically Recyclable Nanoreactors: Sol-Gel Imprinting Enables Template-Switchable Triple-Selectivity

adminBy adminJuly 2, 2025No Comments2 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Atom-Efficient Aldol Condensations via Magnetically Recyclable Nanoreactors: Sol-Gel Imprinting Enables Template-Switchable Triple-Selectivity
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Substrate-selective catalysis is essential for sustainable synthesis but has long been constrained by the inherent trade-off between precision and versatility in competitive environments. To address this challenge, we developed an eco-friendly magnetic nanoreactor that integrates layer-by-layer covalent active-site engineering with sol-gel imprinting to achieve adaptive molecular recognition. These molecularly imprinted nanoreactors (MMIPs), constructed using target products as templates, exhibit triple selectivity: positional (para/meta-isomer discrimination >8-fold), electronic (nitro/cyano differentiation 2-fold) and spatial (isopropyl exclusion) in aldol catalysis. The nanoreactors operate effectively in both single and mixed substrate systems, bypassing the need for energy-intensive purification. A key innovation is the template-switching strategy that enables substrate reorientation, expanding recognition scope without structural redesign. For instance, m-MMIP demonstrates high selectivity (coefficient >1.7) for the low-reactivity m-nitrobenzaldehyde, using its cyclohexanone adduct as a template. The platform minimizes environmental impact by enabling energy-efficient substrate-selective catalysis, reducing the E-factor by >36% while improving atom efficiency by >1.6-fold. By synergizing molecular precision with scalable selectivity and covalent durability, this work establishes a programmable green catalysis paradigm for pharmaceutical and fine chemical synthesis, emphasizing waste reduction and resource optimization.


You have access to this article


Atom-Efficient Aldol Condensations via Magnetically Recyclable Nanoreactors: Sol-Gel Imprinting Enables Template-Switchable Triple-Selectivity
Please wait while we load your content…


Something went wrong. Try again?



Source link

Aldol AtomEfficient Condensations Enables Imprinting Magnetically Nanoreactors recyclable SolGel TemplateSwitchable TripleSelectivity
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
yhhifa9
admin
  • Website

Related Posts

Chemistry

New methods and standardization in chemical forensics

September 23, 2025
Chemistry

Water Splitting | ChemTalk

September 22, 2025
Chemistry

Strategies for Enhancing Energy‑Level Matching in Perovskite Solar Cells: An Energy Flow Perspective

September 21, 2025
Chemistry

More on rescuing articles from a now defunct early pioneering example of an Internet journal.

September 20, 2025
Chemistry

Harvard’s salt trick could turn billions of tons of hair into eco-friendly materials

September 18, 2025
Chemistry

Tumour-specific STING agonist synthesis via a two-component prodrug system

September 17, 2025
Add A Comment
Leave A Reply Cancel Reply

Top Posts

2024 in math puzzles. – Math with Bad Drawings

July 22, 202521 Views

Testing Quantum Theory in Curved Spacetime

July 22, 202514 Views

How AI Is Helping Customer Support Teams Avoid Burnout

May 28, 202510 Views

Chemistry in the sunshine – in C&EN

August 9, 20258 Views
Don't Miss

Can I Use Financial Aid for a Study Abroad Program?

By adminSeptember 23, 20250

248 Are you wondering how to pay for study abroad? You’re not alone! Cost concerns…

What I Wish I Knew Before Starting University | Study in Ireland

September 22, 2025

Meet Four College Students Who Studied Abroad in England

September 19, 2025

Literary Gardens – Global Studies Blog

September 16, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

K-12 Gamification: A Guide For Publishers

September 23, 2025

Can Plantar Fasciitis Cause Knee Pain? Know the Link

September 23, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.