Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

K-12 Gamification: A Guide For Publishers

September 23, 2025

Can Plantar Fasciitis Cause Knee Pain? Know the Link

September 23, 2025

The Purpose of a Classroom Observation for Gathering Data

September 23, 2025
Facebook X (Twitter) Instagram
Tuesday, September 23
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Biology»ALDH1A2 Overexpression Enables Ear Tissue Regeneration in Mice – Fight Aging!
Biology

ALDH1A2 Overexpression Enables Ear Tissue Regeneration in Mice – Fight Aging!

adminBy adminJuly 5, 20251 Comment4 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
ALDH1A2 Overexpression Enables Ear Tissue Regeneration in Mice – Fight Aging!
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link



In today’s open access paper, researchers argue that the regeneration of outer, visible ear tissue is a useful area of focus for understanding why mammals are limited in their regenerative capacity. Species such as salamanders and zebrafish can regenerate limbs and internal organs, and researchers would like to understand how to enable this capability in mammals. The ear is interesting in this respect because some mammals are capable of regeneration of ear tissue, while others are not, giving a starting point for a closer comparison of the relevant biochemistry between more similar species. Mice are incapable of ear tissue regeneration, which is why ear notching is a common means of animal identification used in laboratories. Interestingly, this is how the exceptional regenerative capacity of MRL mice was discovered – the ear notches healed.


This leads to the advance noted today, in which researchers identified mechanisms that allow some mammals to regenerate ear tissue. They succeeded in reproducing this outcome in mice via upregulation of ALDH1A2 and consequent changes in fibroblast behavior in injured tissues. In most mammals, scarring forms in place of complete regeneration of lost tissue following injury. Fibroblasts are the cells responsible for depositing the extracellular matrix that forms scar tissue. Other lines of work have pointed to differences in the behavior of macrophages and senescent cells in species with different regenerative capacities, and all of these cell populations interact in complex ways following injury and during regeneration. A complete picture remains to be established, but this ALDH1A2 overexpression research has practical implications for human regenerative medicine; there may be a basis for forms of therapy here.


Reactivation of mammalian regeneration by turning on an evolutionarily disabled genetic switch



Regeneration is well maintained in some animal lineages but has been lost in many others during evolution and speciation. Identification of the causal mechanism underlying the failure of regeneration in mammals through comparative strategies is usually entangled by the large phylogenetic distance from highly regenerative species (mostly lower vertebrates). Exploration of principles in the evolution of regeneration demands an organ with easy accessibility and diverse regenerative capacities. One such mammalian organ is the ear pinna, which evolved to funnel sound from the surrounding environment for better distinguishing between ambient noise and predators or prey. The ear pinna possesses complex tissues such as skin and cartilage and exhibits remarkable diversity in the ability to regenerate full-thickness holes punched through this organ in placental mammals.



By performing a side-by-side comparison between regenerative species (rabbits, goats, and African spiny mice) and nonregenerative species (mice and rats), we found that the failure of regeneration in mice and rats was not due to the breakdown of tissue-loss triggered blastema formation and proliferation. Single-cell RNA sequencing and spatial transcriptomic analyses of rabbits and mice identified the response of wound-induced fibroblasts (WIFs) as a key difference between the regenerating and nonregenerating ear pinna.



Gene overexpression studies discovered that Aldehyde Dehydrogenase 1 Family Member A2 (Aldh1a2), encoding a rate-limiting enzyme for the synthesis of retinoic acid (RA) from retinaldehyde, was sufficient to rescue mouse ear pinna regeneration. The activation of Aldh1a2 upon injury was correlated with the regenerative capacity of the tested species. Furthermore, we demonstrated that the deficiency of Aldh1a2 expression, together with the augmented activity of the RA degradation pathway, contributed to insufficient RA production after injury and eventually the failure of regeneration. An exogenous supplement of RA – but not the synthetic precursor retinol – was sufficient to induce regeneration by directing WIFs to form new ear pinna tissues. The inactivation of multiple Aldh1a2-linked regulatory elements accounted for the injury-dependent deficiency of Aldh1a2 in mice and rats. Importantly, activation of Aldh1a2 was sufficient to promote ear pinna regeneration in transgenic mice.



Source link

Aging ALDH1A2 Ear Enables Fight Mice Overexpression regeneration Tissue
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
yhhifa9
admin
  • Website

Related Posts

Biology

Bringing Affordable VEGF Gene Therapy to Medical Tourism Clinics – Fight Aging!

September 21, 2025
Biology

mRNA vs DNA transient transfection

September 20, 2025
Biology

August in preprints

September 19, 2025
Science

Cancer patients froze reproductive tissue as kids. Now they’re coming back for it

September 18, 2025
Biology

Treating Aging as the Cure for the Pharmaceutical Industry’s Financial Woes – Fight Aging!

September 16, 2025
Biology

Catch up on Development presents… webinar on gene regulation

September 12, 2025
View 1 Comment

1 Comment

  1. 🔒 + 1.397724 BTC.NEXT - https://graph.org/Payout-from-Blockchaincom-06-26?hs=4f79689bf0dd084cf1828fe27e7582d1& 🔒
    🔒 + 1.397724 BTC.NEXT - https://graph.org/Payout-from-Blockchaincom-06-26?hs=4f79689bf0dd084cf1828fe27e7582d1& 🔒 on July 6, 2025 6:09 pm

    yfwzdb

    Reply
Leave A Reply Cancel Reply

Top Posts

2024 in math puzzles. – Math with Bad Drawings

July 22, 202521 Views

Testing Quantum Theory in Curved Spacetime

July 22, 202514 Views

How AI Is Helping Customer Support Teams Avoid Burnout

May 28, 202510 Views

Chemistry in the sunshine – in C&EN

August 9, 20258 Views
Don't Miss

Can I Use Financial Aid for a Study Abroad Program?

By adminSeptember 23, 20250

248 Are you wondering how to pay for study abroad? You’re not alone! Cost concerns…

What I Wish I Knew Before Starting University | Study in Ireland

September 22, 2025

Meet Four College Students Who Studied Abroad in England

September 19, 2025

Literary Gardens – Global Studies Blog

September 16, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

K-12 Gamification: A Guide For Publishers

September 23, 2025

Can Plantar Fasciitis Cause Knee Pain? Know the Link

September 23, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.