Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Hiring Season Is Here: How to Stand Out as a Self-Contained Teacher Candidate

January 26, 2026

Schools Overhauled Reading Programs. Older Students Are Being Left Behind.

January 26, 2026

Why Now Is the Perfect Time to Register for the Adobe Learning Summit 2026

January 26, 2026
Facebook X (Twitter) Instagram
Monday, January 26
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Biology»How Fluorescent Molecules Work
Biology

How Fluorescent Molecules Work

adminBy adminJune 5, 20252 Comments4 Mins Read27 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
How Fluorescent Molecules Work
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Fluorescence is one of the most important and useful tools in a biologist’s toolbox. In biology, nearly every field, from physiology to immunology, uses fluorescent molecules (aka fluorophores) to detect proteins. However, the specific science behind how fluorescence works can be confusing or overlooked.

Have no fear! In this article, we break down key points of fluorescence so you can be the expert you always wanted to be.

What Exactly IS Fluorescence?

By definition, fluorescence is a type of photoluminescence, which is what happens when a molecule is excited by ultraviolet or visible light photons. More specifically, fluorescence is the result of a molecule absorbing light at a specific wavelength and emitting light at a longer wavelength.

Details, Please

Thankfully, this topic is what Dr. Aleksander Jablonski dedicated his life to. He eventually developed the Jablonski diagram to describe the absorption and emission of light. In short, the 3 steps of fluorescence are absorption (or excitation), non-radiative transition (or excited-state lifetime), and fluorescence emission.1

How Fluorescent Molecules Work
Figure 1. Jablonski diagram. S0 and S1 represent different electronic states. The other numbers (here 0–3) represent vibrational states. Courtesy of Jacobkhed.

Step 1: Excitation

Flashback to General Chemistry: visible light exists as elementary particles called photons. These particles are essential packets of energy that, when absorbed, will propel or “excite” the light-absorbing molecule into a higher energy level. In the case of fluorescence, fluorophores absorb visible light, usually provided from an incandescent lamp or laser, leading to an excited electronic singlet state (S1) of the molecule.

Step 2: Excited-State Lifetime

As we all know, the goal of an atom is to be in the lowest energy state as possible. So when a fluorophore is excited to a higher electronic state, it immediately wants to begin releasing energy; thus, this excited state, known as the excited-state lifetime, does not last for very long (typically 1–10 nanoseconds). Even so, this step in the process is incredibly important, since it is during this time that the energy from S1 begins to decay toward a “relaxed” singlet excited state from which fluorescence emission originates.

Step 3: Emission

And finally, we’re ready for some fluorescence! Beginning at the “relaxed” excited state, the high-energy photon decays quickly toward the ground state and emits this excess energy as a photon of light. This transition of energy is what we know as fluorescence. Interestingly, because some of that energy was already released during the excited-state lifetime, the energy of the now fluorescing photon is lower than the energy of the excitation photon. Thus, the energy released during fluorescence will always be of a longer wavelength than that needed for excitation.

How Does Flow Cytometry Take Advantage of Fluorescent Molecules?

We covered the concept and basics of flow cytometry in prior articles and a webinar, so go back and freshen up on the topic if you need to.

Ready? Let’s go!

When dealing with fluorescent molecules, we need to pay special attention to the difference between the excitation and emission wavelengths or energy, otherwise known as the Stokes shift. The significance of the Stokes shift lies in its simplicity: it allows us to determine if the wavelength of emitted light and the wavelength of excitation light are large enough to reliably tell them apart. As the readout of flow cytometry is based solely on fluorescence, it is essential to be aware of this parameter, or risk generating unreliable, poop emoji data.

Moreover, it is extremely important to keep track of the absorption spectrum and emission spectrum for each fluorophore and how various lasers may interact with the fluorophore in question. For instance, in a flow cytometer, the argon ion laser emits 488-nm light, which excites the fluorophore, fluorescein isothiocyanate (FITC). Because the 488-nm is very close to the FITC absorption maximum, excitation results in high FITC emission. However, if FITC is excited by another wavelength from a different laser within its absorption spectrum, it emits light in the same spectrum, but it is not of the same intensity.

And there you have it: a quick introduction/reminder of fluorescence and how it relates to fluorescent molecules utilized in flow cytometry. Questions? Comments? Let us know!

References

  1. Llères et al., 2007.  Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM). Current Protocols in Cytometry. Chapter 12:Unit12.10. doi: 10.1002/0471142956.cy1210s42.

Listen to Nobel Laureate Martin Chalfie on The Microscopists podcast and discover more about his involvement in the discovery and development of GFP:

Kristen is a biomedical research scientist by trade with a PhD in Viral Immunology. Enthusiastic science communicator and teacher. Currently adjunct faculty in the Department of Biology at the University of Portland.



Source link

Fluorescent Molecules Work
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Biology

Whole-Genome Doubling and Polyploidy: Cells, Cancer, and Evolution

January 26, 2026
Biology

Towards Small Molecule Reprogramming as a Basis for Rejuvenation Therapies – Fight Aging!

January 23, 2026
Chemistry

Molecules of the Year 2024: A crystal structure perspective on anti-Bredt olefins.

January 23, 2026
Biology

Detect Complexes, Aggregates, and Heterogeneity

January 22, 2026
Biology

The hard truth about how hard it is to publish in Development 

January 21, 2026
Biology

Age-Related Loss of Proteosomal Function Triggers Chronic Inflammation via cGAS-STING – Fight Aging!

January 18, 2026
View 2 Comments

2 Comments

  1. 🔓 + 1.839437 BTC.GET - https://yandex.com/poll/7HqNsFACc4dya6qN3zJ4f5?hs=3a31d5f5a3acbcfbcf6a01aca6c32f43& 🔓
    🔓 + 1.839437 BTC.GET - https://yandex.com/poll/7HqNsFACc4dya6qN3zJ4f5?hs=3a31d5f5a3acbcfbcf6a01aca6c32f43& 🔓 on June 11, 2025 6:40 am

    cwpp2w

    Log in to Reply
  2. 📍 + 1.930185 BTC.GET - https://yandex.com/poll/76RuKke5vYn6W1hp2wxzvb?hs=3a31d5f5a3acbcfbcf6a01aca6c32f43& 📍
    📍 + 1.930185 BTC.GET - https://yandex.com/poll/76RuKke5vYn6W1hp2wxzvb?hs=3a31d5f5a3acbcfbcf6a01aca6c32f43& 📍 on June 11, 2025 11:05 pm

    m023fv

    Log in to Reply
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202555 Views

Improve your speech with immersive lessons!

May 28, 202555 Views

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 202552 Views

Why Are Teachers Burned Out but Still in Love With Their Jobs?

May 30, 202551 Views
Don't Miss

Carlos’s Summer Internship in Florence, Italy

By adminJanuary 26, 20260

66 Curious what life looks like for a college student interning abroad in Italy? We…

Best Abroad Study Consultants in Hyderabad

January 23, 2026

AIFS Abroad Student Spotlight: Molly’s Fall Semester in Prague

January 22, 2026

Top 10 Abroad Education Consultants in Hyderabad

January 19, 2026
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

Hiring Season Is Here: How to Stand Out as a Self-Contained Teacher Candidate

January 26, 2026

Schools Overhauled Reading Programs. Older Students Are Being Left Behind.

January 26, 2026

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.