Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Hiring Season Is Here: How to Stand Out as a Self-Contained Teacher Candidate

January 26, 2026

Schools Overhauled Reading Programs. Older Students Are Being Left Behind.

January 26, 2026

Why Now Is the Perfect Time to Register for the Adobe Learning Summit 2026

January 26, 2026
Facebook X (Twitter) Instagram
Monday, January 26
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»An integrated workflow for the structure elucidation of nanocrystalline powders
Chemistry

An integrated workflow for the structure elucidation of nanocrystalline powders

adminBy adminJanuary 25, 2026No Comments12 Mins Read1 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
An integrated workflow for the structure elucidation of nanocrystalline powders
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Solares-Briones, M. et al. Mechanochemistry: a green approach in the preparation of pharmaceutical cocrystals. Pharmaceutics 13, 790 (2021).


    Google Scholar
     

  • Braga, D., Maini, L. & Grepioni, F. Mechanochemical preparation of co-crystals. Chem. Soc. Rev. 42, 7638–7648 (2013).


    Google Scholar
     

  • Ying, P., Yu, J. & Su, W. Liquid-assisted grinding mechanochemistry in the synthesis of pharmaceuticals. Adv. Synth. Catal. 363, 1246–1271 (2021).


    Google Scholar
     

  • Hasa, D. & Jones, W. Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide. Adv. Drug Deliv. Rev. 117, 147–161 (2017).


    Google Scholar
     

  • Carneiro, R. L. et al. Mechanochemical synthesis and characterization of a novel AAs–Flucytosine drug–drug cocrystal: a versatile model system for green approaches. J. Mol. Struct. 1251, 132052 (2022).


    Google Scholar
     

  • Kamali, N., Gniado, K., McArdle, P. & Erxleben, A. Application of ball milling for highly selective mechanochemical polymorph transformations. Org. Process Res. Dev. 22, 796–802 (2018).


    Google Scholar
     

  • Do, J.-L. & Friščić, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017).


    Google Scholar
     

  • Caira, M. R., Nassimbeni, L. R. & Wildervanck, A. F. Selective formation of hydrogen bonded cocrystals between a sulfonamide and aromatic carboxylic acids in the solid state. J. Chem. Soc., Perkin Trans. 2, 2213–2216 (1995).


    Google Scholar
     

  • Raheem Thayyil, A., Juturu, T., Nayak, S. & Kamath, S. Pharmaceutical co-crystallization: regulatory aspects, design, characterization, and applications. Adv. Pharm. Bull. 10, 203–212 (2020).


    Google Scholar
     

  • Aitipamula, S. et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst. Growth Des. 12, 2147–2152 (2012).


    Google Scholar
     

  • Karagianni, A., Malamatari, M. & Kachrimanis, K. Pharmaceutical cocrystals: new solid phase modification approaches for the formulation of APIs. Pharmaceutics 10, 18 (2018).


    Google Scholar
     

  • Yadav, A. V., Shete, A. S., Dabke, A. P., Kulkarni, P. V. & Sakhare, S. S. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 71, 359–370 (2009).


    Google Scholar
     

  • Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. Pharmaceutical co-crystals. J. Pharm. Sci. 95, 499–516 (2006).


    Google Scholar
     

  • Miroshnyk, I., Mirza, S. & Sandler, N. Pharmaceutical co-crystals-an opportunity for drug product enhancement. Expert Opin. Drug Deliv. 6, 333–341 (2009).


    Google Scholar
     

  • Jones, W., Motherwell, W. D. S. & Trask, A. V. Pharmaceutical cocrystals: an emerging approach to physical property enhancement. MRS Bull. 31, 875–879 (2006).


    Google Scholar
     

  • Schultheiss, N. & Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 9, 2950–2967 (2009).


    Google Scholar
     

  • Ross, S. A., Ward, A., Basford, P., McAllister, M. & Douroumis, D. Coprocessing of pharmaceutical cocrystals for high quality and enhanced physicochemical stability. Cryst. Growth Des. 19, 876–888 (2019).


    Google Scholar
     

  • Gokhale, M. Y. & Mantri, R. V. Chapter 4 – API solid-form screening and selection. In Developing Solid Oral Dosage Forms (Second Edition) (eds, Qiu, Y., Chen, Y., Zhang, G. G. Z., Yu, L. & Mantri, R. V.) 85–112 (Academic Press, 2017).

  • Schultheiss, N. & Henck, J.-O. Role of co-crystals in the Pharmaceutical Development Continuum. In Pharmaceutical Salts and Co-crystals (eds. Wouters, J. & Quéré, L.) 0 (The Royal Society of Chemistry, 2011).

  • D’Abbrunzo, I. et al. Higher-order multicomponent crystals as a strategy to decrease the IC50 parameter: the case of praziquantel, niclosamide and acetic acid. J. Drug Deliv. Sci. Technol. 109, 106974 (2025).


    Google Scholar
     

  • Pindelska, E., Sokal, A. & Kolodziejski, W. Pharmaceutical cocrystals, salts and polymorphs: advanced characterization techniques. Adv. Drug Deliv. Rev. 117, 111–146 (2017).


    Google Scholar
     

  • Bravetti, F., Hühn, R., Bordignon, S., Reibeling, S. & Schmidt, M. U. Crystal structure and tautomeric state of Pigment Red 48:2 from X-ray powder diffraction and solid-state NMR. Z. f.ür. Kristallographie Crystalline Mater. 239, 283–297 (2024).


    Google Scholar
     

  • Luedeker, D., Gossmann, R., Langer, K. & Brunklaus, G. Crystal engineering of pharmaceutical co-crystals: “NMR crystallography” of niclosamide co-crystals. Cryst. Growth Des. 16, 3087–3100 (2016).


    Google Scholar
     

  • Bravetti, F. et al. Solid-state NMR-driven crystal structure prediction of molecular crystals: the case of mebendazole. Chem. A Eur. J. 28, e202103589 (2022).


    Google Scholar
     

  • Fernandes, J. A., Sardo, M., Mafra, L., Choquesillo-Lazarte, D. & Masciocchi, N. X-ray and NMR crystallography studies of novel theophylline cocrystals prepared by liquid assisted grinding. Cryst. Growth Des. 15, 3674–3683 (2015).


    Google Scholar
     

  • Hodgkinson, P. NMR crystallography of molecular organics. Prog. Nucl. Magn. Reson. Spectrosc. 118–119, 10–53 (2020).


    Google Scholar
     

  • Baias, M. et al. Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy. Phys. Chem. Chem. Phys. 15, 8069–8080 (2013).


    Google Scholar
     

  • Bravetti, F. et al. Zwitterionic or not? Fast and reliable structure determination by combining crystal structure prediction and solid-state NMR. Molecules 28, 1876 (2023).


    Google Scholar
     

  • Khalaji, M., Paluch, P., Potrzebowski, M. J. & Dudek, M. K. Narrowing down the conformational space with solid-state NMR in crystal structure prediction of linezolid cocrystals. Solid State Nucl. Magn. Reson. 121, 101813 (2022).


    Google Scholar
     

  • Dudek, M. K. et al. Crystal structure determination of an elusive methanol solvate – hydrate of catechin using crystal structure prediction and NMR crystallography. CrystEngComm 22, 4969–4981 (2020).


    Google Scholar
     

  • Elena, B., Pintacuda, G., Mifsud, N. & Emsley, L. Molecular structure determination in powders by NMR crystallography from proton spin diffusion. J. Am. Chem. Soc. 128, 9555–9560 (2006).


    Google Scholar
     

  • Harris, R. K. NMR crystallography: the use of chemical shifts. Solid State Sci. 6, 1025–1037 (2004).


    Google Scholar
     

  • Helliwell, J. R. NMR crystallography. In Certifying Central Facility Beamlines for Biological and Chemical Crystallography and Allied Methods (ed. Helliwell, J. R.) 63–64 (Springer Nature, 2025).

  • Harris, R. K. NMR studies of organic polymorphs & solvates. Analyst 131, 351–373 (2006).


    Google Scholar
     

  • Lahtinen, M., Behera, B., Kolehmainen, E. & Maitra, U. Unraveling the packing pattern leading to gelation using SS NMR and X-ray diffraction: direct observation of the evolution of self-assembled fibers. Soft Matter 6, 1748–1757 (2010).


    Google Scholar
     

  • Kolehmainen, E. et al. Solid state NMR studies of gels derived from low molecular mass gelators. Soft Matter 12, 6015–6026 (2016).


    Google Scholar
     

  • Nonappa, Lahtinen, M., Ikonen, S., Kolehmainen, E. & Kauppinen, R. Solid-state NMR, X-ray diffraction, and thermoanalytical studies towards the identification, isolation, and structural characterization of polymorphs in natural bile acids. Cryst. Growth Des. 9, 4710–4719 (2009).


    Google Scholar
     

  • Guzmán-Afonso, C. et al. Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography. Nat. Commun. 10, 3537 (2019).


    Google Scholar
     

  • Duong, N. T., Aoyama, Y., Kawamoto, K., Yamazaki, T. & Nishiyama, Y. Structure solution of nano-crystalline small molecules using microED and solid-state NMR dipolar-based experiments. Molecules 26, 4652 (2021).


    Google Scholar
     

  • Oikawa, T., Okumura, M., Kimura, T. & Nishiyama, Y. Solid-state NMR meets electron diffraction: Determination of crystalline polymorphs of small organic microcrystalline samples. Acta Crystallogr. Sect. C Struct. Chem. 73, 219–228 (2017).


    Google Scholar
     

  • Nishiyama, Y. Locating hydrogen atoms using fast-MAS solid-state NMR and microED. In NMR Spectroscopy for Probing Functional Dynamics at Biological Interfaces (eds. Bhunia, A., Atreya, H. S. & Sinha, N.), (The Royal Society of Chemistry, 2022).

  • Rodriguez, J. A. & Gonen, T. Chapter Fourteen – High-resolution macromolecular structure determination by microED, a cryo-EM method. In Methods in Enzymology (ed. Crowther, R. A.) Vol. 579, 369–392 (Academic Press, 2016).

  • Nannenga, B. L. MicroED methodology and development. Struct. Dyn. 7, 014304 (2020).


    Google Scholar
     

  • Jones, C. G. et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).


    Google Scholar
     

  • Gruene, T. et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int Ed. Engl. 57, 16313–16317 (2018).


    Google Scholar
     

  • Kolb, U., Gorelik, T., Kübel, C., Otten, M. T. & Hubert, D. Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 107, 507–513 (2007).


    Google Scholar
     

  • Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev. Biophys. 28, 171–193 (1995).


    Google Scholar
     

  • Nannenga, B. L. & Gonen, T. MicroED: a versatile cryoEM method for structure determination. Emerg. Top. Life Sci. 2, 1–8 (2018).


    Google Scholar
     

  • Hattne, J. et al. MicroED data collection and processing. Acta Crystallogr. A Found. Adv. 71, 353–360 (2015).


    Google Scholar
     

  • Nannenga, B. L. & Gonen, T. MicroED opens a new era for biological structure determination. Curr. Opin. Struct. Biol. 40, 128–135 (2016).


    Google Scholar
     

  • Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).


    Google Scholar
     

  • van Genderen, E. et al. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Acta Crystallogr. A Found. Adv. 72, 236–242 (2016).


    Google Scholar
     

  • Shi, D., Nannenga, B. L., Iadanza, M. G. & Gonen, T. Three-dimensional electron crystallography of protein microcrystals. Elife 2, e01345 (2013).


    Google Scholar
     

  • Bernasconi, D. et al. Selective synthesis of a salt and a cocrystal of the ethionamide–salicylic acid system. Cryst. Growth Des. 20, 906–915 (2020).


    Google Scholar
     

  • Chierotti, M. et al. From molecular crystals to salt co-crystals of barbituric acid via the carbonate ion and an improvement of the solid state properties. CrystEngComm 15, 7598–7605 (2013).


    Google Scholar
     

  • Maiorca, B. et al. Investigation of solid-state forms between p-aminosalicylic acid and adenine: Exploring salts, cocrystals and their polymorphism. J. Drug Deliv. Sci. Technol. 115, 107762 (2026).


    Google Scholar
     

  • Gumbert, S. D. et al. Crystal structure and tautomerism of Pigment Yellow 138 determined by X-ray powder diffraction and solid-state NMR. Dyes Pigments 131, 364–372 (2016).


    Google Scholar
     

  • Chierotti, M. R. & Gobetto, R. Solid-state NMR studies of weak interactions in supramolecular systems. Chem. Commun. 1621, 1634 (2008).


    Google Scholar
     

  • Duong, N. T., Gan, Z. & Nishiyama, Y. Selective 1H-14N distance measurements by 14N overtone solid-state NMR spectroscopy at fast MAS. Front. Mol. Biosci. 8, 645347 (2021).


    Google Scholar
     

  • Duong, N. T. et al. Accurate 1H-14N distance measurements by phase-modulated RESPDOR at ultra-fast MAS. J. Magn. Reson 308, 106559 (2019).


    Google Scholar
     

  • Duong, N. T., Raran-Kurussi, S., Nishiyama, Y. & Agarwal, V. Can proton-proton recoupling in fully protonated solids provide quantitative, selective and efficient polarization transfer?. J. Magn. Reson. 317, 106777 (2020).


    Google Scholar
     

  • Geppi, M., Mollica, G., Borsacchi, S. & Veracini, C. A. Solid-state NMR studies of pharmaceutical systems. Appl. Spectrosc. Rev. 43, 202–302 (2008).


    Google Scholar
     

  • Xu, Y., Southern, S. A., Szell, P. M. J. & Bryce, D. L. The role of solid-state nuclear magnetic resonance in crystal engineering. CrystEngComm 18, 5236–5252 (2016).


    Google Scholar
     

  • Berendt, R. T., Sperger, D. M., Munson, E. J. & Isbester, P. K. Solid-state NMR spectroscopy in pharmaceutical research and analysis. TrAC Trends Anal. Chem. 25, 977–984 (2006).


    Google Scholar
     

  • Sardo, M., Rocha, J. & Mafra, L. Solid-state NMR applications in the structural elucidation of small molecules. In Structure Elucidation in Organic Chemistry 173–240 (John Wiley & Sons, Ltd, 2015).

  • Cossard, A. et al. Advanced feature analysis for enhancing cocrystal prediction. Chemometrics Intell. Lab. Syst. 257, 105318 (2025).


    Google Scholar
     

  • Marasco, W. A. et al. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J. Biol. Chem. 259, 5430–5439 (1984).


    Google Scholar
     

  • Salamah, M. F. et al. The formyl peptide fMLF primes platelet activation and augments thrombus formation. J. Thrombosis Haemost. 17, 1120–1133 (2019).


    Google Scholar
     

  • Palatinus, L. et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 355, 166–169 (2017).


    Google Scholar
     

  • Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 364, 667–669 (2019).


    Google Scholar
     

  • Stein, M. & Heimsaat, M. Intermolecular interactions in molecular organic crystals upon relaxation of lattice parameters. Crystals 9, 665 (2019).


    Google Scholar
     

  • van de Streek, J. & Neumann, M. A. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations. Acta Cryst. B 66, 544–558 (2010).


    Google Scholar
     

  • Aramini, A. et al. Unexpected salt/cocrystal polymorphism of the ketoprofen–lysine system: discovery of a new ketoprofen–l-lysine salt polymorph with different physicochemical and pharmacokinetic properties. Pharmaceuticals 14, 555 (2021).


    Google Scholar
     

  • Bajaj, V. S., van der Wel, P. C. A. & Griffin, R. G. Observation of a low-temperature, dynamically driven structural transition in a polypeptide by solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 118–128 (2009).


    Google Scholar
     

  • Nishiyama, Y. et al. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100 kHz MAS. Solid State Nucl. Magn. Reson. 66–67, 56–61 (2015).


    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens Matter 21, 395502 (2009).


    Google Scholar
     

  • Lee, K., Murray, ÉD., Kong, L., Lundqvist, B. I. & Langreth, D. C. A higher-accuracy van der waals density functional. Phys. Rev. B 82, 081101 (2010).


    Google Scholar
     

  • Hamada, I. van der Waals density functional made accurate. Phys. Rev. B 89, 121103 (2014).


    Google Scholar
     

  • Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput Mater. 4, 72 (2018).


    Google Scholar
     

  • Charpentier, T. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. Solid State Nucl. Magn. Reson. 40, 1–20 (2011).


    Google Scholar
     

  • Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).


    Google Scholar
     

  • Franco, F., Baricco, M., Chierotti, M. R., Gobetto, R. & Nervi, C. Coupling solid-state NMR with GIPAW ab initio calculations in metal hydrides and borohydrides. J. Phys. Chem. C. 117, 9991–9998 (2013).


    Google Scholar
     

  • Harris, R. K., Hodgkinson, P., Pickard, C. J., Yates, J. R. & Zorin, V. Chemical shift computations on a crystallographic basis: some reflections and comments. Magn. Reson. Chem. 45, S174–S186 (2007).


    Google Scholar
     

  • Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).


    Google Scholar
     



  • Source link

    Characterization and analytical techniques Chemistry/Food Science elucidation General integrated nanocrystalline NMR spectroscopy powders Structure Techniques and instrumentation Workflow
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
    thanhphuchoang09
    admin
    • Website

    Related Posts

    Chemistry

    New catalyst makes plastic upcycling 10x more efficient than platinum

    January 26, 2026
    Chemistry

    Fundamental Particles and Particle Physics

    January 24, 2026
    Chemistry

    Molecules of the Year 2024: A crystal structure perspective on anti-Bredt olefins.

    January 23, 2026
    Math

    The integrated explicit analytic number theory network

    January 23, 2026
    Chemistry

    Rational design of PMo12-SiW12 coupled catalytic system toward energy-efficient methanol-to-hydrogen conversion

    January 22, 2026
    IELTS

    Latest IELTS test questions in Australia – January 2026 (General Training)

    January 21, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Top Posts

    Announcing the All-New EdTechTeacher Summer Learning Pass!

    May 31, 202555 Views

    Improve your speech with immersive lessons!

    May 28, 202555 Views

    Weekly Student News Quiz: National Guard, Taylor Swift, Comets

    October 13, 202552 Views

    Why Are Teachers Burned Out but Still in Love With Their Jobs?

    May 30, 202550 Views
    Don't Miss

    Carlos’s Summer Internship in Florence, Italy

    By adminJanuary 26, 20260

    66 Curious what life looks like for a college student interning abroad in Italy? We…

    Best Abroad Study Consultants in Hyderabad

    January 23, 2026

    AIFS Abroad Student Spotlight: Molly’s Fall Semester in Prague

    January 22, 2026

    Top 10 Abroad Education Consultants in Hyderabad

    January 19, 2026
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us
    About Us

    Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

    Our Picks

    Hiring Season Is Here: How to Stand Out as a Self-Contained Teacher Candidate

    January 26, 2026

    Schools Overhauled Reading Programs. Older Students Are Being Left Behind.

    January 26, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    Copyright© 2025 Bkngpnarnaul All Rights Reserved.
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.