Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

February Lesson Plans for Special Education

January 22, 2026

Designing the 2026 Classroom: Emerging Learning Trends in an AI-Powered Education System – Faculty Focus

January 22, 2026

A Brief Introduction to Buckminster Fuller and His Techno-Optimistic Ideas

January 22, 2026
Facebook X (Twitter) Instagram
Thursday, January 22
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Facile molten salt synthesis of bimetallic NiFe-Ti3C2Tx MXene nano-hybrid as an efficient oxygen evolution electrocatalyst
Chemistry

Facile molten salt synthesis of bimetallic NiFe-Ti3C2Tx MXene nano-hybrid as an efficient oxygen evolution electrocatalyst

adminBy adminJanuary 19, 2026No Comments12 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Facile molten salt synthesis of bimetallic NiFe-Ti3C2Tx MXene nano-hybrid as an efficient oxygen evolution electrocatalyst
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


  • International Energy Agency. World Energy Outlook 2024 (International Energy Agency, 2024).

  • Zeng, K. & Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010).

  • Ullah, N. et al. In situ growth of M-MO (M = Ni, Co) in 3D graphene as a competent bifunctional electrocatalyst for OER and HER. Electrochim. Acta 298, 163–171 (2019).


    Google Scholar
     

  • Siwal, S. S., Yang, W. & Zhang, Q. Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media. J. Energy Chem. 51, 113–133 (2020).

  • Xie, X. et al. Oxygen evolution reaction in alkaline environment: material challenges and solutions. Adv. Funct. Mater. 32, 2110036 (2022).

  • Sebbahi, S. et al. Assessment of the three most developed water electrolysis technologies: alkaline water electrolysis, proton exchange membrane and solid-oxide electrolysis. Mater. Today Proc. 66, 140–145 (2022).

  • Zhang, K. & Zou, R. Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small 17, e2100129 (2021).

  • Song, J. et al. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214 (2020).

  • Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater 23, 4248–4253 (2011).


    Google Scholar
     

  • Mohammadi, A. V., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, 1979 (2021).


    Google Scholar
     

  • Anne, B. R. et al. A review on MXene as promising support materials for oxygen evolution reaction catalysts. Adv. Funct. Mater. 33, 2306100 (2023).


    Google Scholar
     

  • Tsounis, C. et al. Advancing MXene electrocatalysts for energy conversion reactions: surface, stoichiometry, and stability. Angew. Chem. Int. Ed. 62, e202210828 (2023).


    Google Scholar
     

  • Tyndall, D. et al. Understanding the effect of MXene in a TMO/MXene hybrid catalyst for the oxygen evolution reaction. NPJ 2D Mater. Appl. 7, 15 (2023).


    Google Scholar
     

  • Browne, M. P., Tyndall, D. & Nicolosi, V. The potential of MXene materials as a component in the catalyst layer for the oxygen evolution reaction. Curr. Opin. Electrochem. 34, 101021 (2022).


    Google Scholar
     

  • Yu, M., Zhou, S., Wang, Z., Zhao, J. & Qiu, J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44, 181–190 (2018).


    Google Scholar
     

  • Benchakar, M. et al. MXene supported cobalt layered double hydroxide nanocrystals: facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst. Adv. Mater. Interfaces 6, 1901328 (2019).


    Google Scholar
     

  • Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).


    Google Scholar
     

  • Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater 29, 7633–7644 (2017).


    Google Scholar
     

  • Chen, J. et al. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 66, 1063–1072 (2021).


    Google Scholar
     

  • Schmiedecke, B. et al. Enhancing the oxygen evolution reaction activity of CuCo based hydroxides with V2CTx MXene. J. Mater. Chem. A Mater. (2024).

  • Vazhayil, A. et al. NiCo2O4/MXene hybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reaction. ChemCatChem 16, e202301250 (2024).


    Google Scholar
     

  • Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).


    Google Scholar
     

  • Li, M. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019).


    Google Scholar
     

  • Wang, Y. et al. Simple one-step molten salt method for synthesizing highly efficient MXene-supported Pt nanoalloy electrocatalysts. Adv. Sci. 10, 2303693 (2023).


    Google Scholar
     

  • Luo, R. et al. Facile synthesis of cobalt modified 2D titanium carbide with enhanced hydrogen evolution performance in alkaline media. Int. J. Hydrog. Energy 46, 32536–32545 (2021).


    Google Scholar
     

  • Jiang, J. et al. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 15, 5977–5986 (2022).


    Google Scholar
     

  • Zhang, Z. et al. Synergistically coupling CoS/FeS2 heterojunction nanosheets on a MXene via a dual molten salt etching strategy for efficient oxygen evolution reaction. J. Mater. Chem. A Mater. 12, 14517–14530 (2024).

  • Kruger, D. D. et al. Influence of surface terminal groups on the efficiency of two-electron oxygen reduction reaction catalyzed by iron single atoms on Ti3C2Tx (T = Cl, Br, NH) MXene. J. Mater. Chem. A Mater. 12, 25291–25303 (2024).


    Google Scholar
     

  • Cui, Z. et al. Molten salts etching strategy construct alloy/MXene heterostructures for efficient ammonia synthesis and energy supply via Zn-nitrite battery. Appl. Catal. B 348, 123862 (2024).

  • Wang, Y. et al. Controlled etching to immobilize highly dispersed Fe in MXene for electrochemical ammonia production. Carbon Neutraliz. 1, 117–125 (2022).


    Google Scholar
     

  • Zhao, Q. et al. Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15, 4927–4936 (2021).

  • Kruger, D. D., García, H. & Primo, A. Molten salt derived mxenes: synthesis and applications. Adv. Sci. 11, 2307106 (2024).


    Google Scholar
     

  • Zhang, Z., Ji, Y., Jiang, Q. & Xia, C. Molten-salt synthesized MXene for catalytic applications: a review. Chem. Phys. Rev. 5, 031311 (2024).

  • Wang, F. et al. Advances in molten-salt-assisted synthesis of 2D MXenes and their applications in electrochemical energy storage and conversion. Chem. Eng. J. 470, 144185 (2023).


    Google Scholar
     

  • Wu, Z. et al. One-step in-situ synthesis of Sn-nanoconfined Ti3C2Tx MXene composites for Li-ion battery anode. Electrochim. Acta 407, 139916 (2022).

  • Chen, X. et al. Enhanced sodium storage in MXene transition metal chalcogenides anode through dual molten salt etching. Electrochim. Acta 509, 145334 (2025).

  • Song, H. et al. Anchoring single atom cobalt on two-dimensional MXene for activation of peroxymonosulfate. Appl. Catal. B 286, 119898 (2021).


    Google Scholar
     

  • Bai, Y. et al. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem. Int. Ed. 60, 25318–25322 (2021).


    Google Scholar
     

  • Wierzba, B., Nowak, W. J. & Serafin, D. The interface reaction between titanium and iron-nickel alloys. High. Temp. Mater. Process. 37, 683–691 (2018).


    Google Scholar
     

  • Cacciamani, G. et al. Critical evaluation of the Fe-Ni, Fe-Ti and Fe-Ni-Ti alloy systems. Intermetallics 14, 1312–1325 (2006).


    Google Scholar
     

  • Raimundo, R. A. et al. NiFe alloy nanoparticles tuning the structure, magnetism, and application for oxygen evolution reaction catalysis. Magnetochemistry 9, 201 (2023).

  • Kim, S. M. et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. J. Am. Chem. Soc. 139, 1937–1949 (2017).


    Google Scholar
     

  • Sahoo, A., Medicherla, V. R. R., Vijay, K. & Banik, S. Resonant photoemission studies on Fe-Ni alloys. J. Alloys Compd. 994, 174544 (2024).

  • Seto, Y. & Ohtsuka, M. ReciPro: free and open-source multipurpose crystallographic software integrating a crystal model database and viewer, diffraction and microscopy simulators, and diffraction data analysis tools. J. Appl. Crystallogr. 55, 397–410 (2022).


    Google Scholar
     

  • Biesinger, M. C., Payne, B. P., Lau, L. W. M., Gerson, A. & Smart, R. S. C. X-ray photoelectron spectroscopic chemical state Quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 41, 324–332 (2009).


    Google Scholar
     

  • Guillot, J. et al. Quantification of a Ti(CxN1-x) based multilayer by Auger electron spectroscopy. Appl. Surf. Sci. 256, 773–778 (2009).

  • Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011).


    Google Scholar
     

  • Halim, J. et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016).


    Google Scholar
     

  • Naslund, L. Å., Persson, P. O. Å. & Rosen, J. X-ray photoelectron spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC provides evidence for the electrostatic interaction between laminated layers in max-phase materials. J. Phys. Chem. C 124 27732–27742 (2020).

  • Frenkel, A. I. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem. Soc. Rev. 41, 8163–8178 (2012).


    Google Scholar
     

  • Mirehbar, S. et al. Evidence of cathodic peroxydisulfate activation via electrochemical reduction at Fe(II) sites of magnetite-decorated porous carbon: application to dye degradation in water. J. Electroanal. Chem. 902, 115807 (2021).


    Google Scholar
     

  • Roberts, J. J. P., Westgard, J. A., Cooper, L. M. & Murray, R. W. Solution voltammetry of 4 nm magnetite iron oxide nanoparticles. J. Am. Chem. Soc. 136, 10783–10789 (2014).


    Google Scholar
     

  • Dionigi, F. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020).

  • Xiang, W. et al. Unveiling surface species formed on Ni-Fe spinel oxides during the oxygen evolution reaction at the atomic scale. Adv. Sci. 12, 2501967 (2025).


    Google Scholar
     

  • Rao, R. R. et al. Unraveling the role of particle size and nanostructuring on the oxygen evolution activity of Fe-doped NiO. ACS Catal. 14, 11389–11399 (2024).


    Google Scholar
     

  • Flores, G. et al. Understanding the impact of M-OH activation on oxygen evolution in Hofmann-type 2D coordination polymers: insights from experiments and theory. Int. J. Hydrog. Energy 157, 150385 (2025).


    Google Scholar
     

  • Klaus, S., Louie, M. W., Trotochaud, L. & Bell, A. T. Role of catalyst preparation on the electrocatalytic activity of Ni1-xFexOOH for the oxygen evolution reaction. J. Phys. Chem. C 119, 18303–18316 (2015).

  • Doyle, R. L. & Lyons, M. E. G. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys. Chem. Chem. Phys. 15, 5224–5237 (2013).


    Google Scholar
     

  • Zheng, W. iR compensation for electrocatalysis studies: considerations and recommendations. ACS Energy Lett. 8, 1952–1958 (2023).

  • Tahir, M. et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017).


    Google Scholar
     

  • Trze¨sniewski, B. J. et al. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity. J. Am. Chem. Soc. 137, 15112–15121 (2015).


    Google Scholar
     

  • Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744-6753 (2014).

  • Schönleber, M., Klotz, D. & Ivers-Tiffée, E. A method for improving the robustness of linear Kramers-Kronig validity tests. Electrochim. Acta 131, 20–27 (2014).


    Google Scholar
     

  • Murbach, M. D., Gerwe, B., Dawson-Elli, N. & Tsui, L. impedance.py: a Python package for electrochemical impedance analysis. J. Open Source Softw. 5, 2349 (2020).


    Google Scholar
     

  • Bisquert, J. & Balaguera, E. H. Brief guide to transformation of constant phase element impedance to equivalent capacitor or inductor. J. Phys. Chem. Lett. 16, 5779–5783 (2025).


    Google Scholar
     

  • Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M. & Sluyters, J. H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 176, 275–295 (1984).


    Google Scholar
     

  • Tyndall, D. et al. Demonstrating the source of inherent instability in NiFe LDH-based OER electrocatalysts. J. Mater. Chem. A Mater. 11, 4067–4077 (2023).


    Google Scholar
     

  • Hu, C. et al. Surface-enhanced Raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation. Angew. Chem. Int. Ed. 60, 19774–19778 (2021).


    Google Scholar
     

  • Hedenstedt, K., Bäckström, J. & Ahlberg, E. In-situ Raman spectroscopy of α- and γ-FeOOH during cathodic load. J. Electrochem. Soc. 164, H621–H627 (2017).


    Google Scholar
     

  • Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry 161–183 (John Wiley and Sons, 2008).

  • Shi, Z. et al. Oxidation of Fe-Ni alloys in air at 700°C, 800°C and 950°C. High. Temp. Mater. Process. 31, 89–96 (2012).


    Google Scholar
     

  • Zhu, K., Zhu, X. & Yang, W. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. 58, 1252–1265 (2019).


    Google Scholar
     

  • Avcl, ÖN., Sementa, L. & Fortunelli, A. Mechanisms of the oxygen evolution reaction on NiFe2O4 and CoFe2O4 inverse-spinel oxides. ACS Catal. 12, 9058–9073 (2022).

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).


    Google Scholar
     

  • Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C. & Eller, M. J. Multiple-scattering calculations of x-ray-absorption spectra. Phys. Rev. B 52, 2995 (1994).

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).


    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).


    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).


    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).


    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).


    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).


    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).


    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132 (2010).

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).


    Google Scholar
     

  • Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).


    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).


    Google Scholar
     

  • Cheng, R. et al. Understanding the lithium storage mechanism of Ti3C2Tx MXene. J. Phys. Chem. C 123, 1099–1109 (2018).

  • Kazemi, S. A. et al. Halogenation effect on physicochemical properties of Ti3C2 MXenes. J. Phys. Mater. 6, 035004 (2023).

  • Jain, A. et al. Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

  • Zur, A. & McGill, T. C. Lattice match: an application to heteroepitaxy. J. Appl. Phys. 55, 378–386 (1984).


    Google Scholar
     

  • Kawashima, K. et al. Accurate potentials of Hg/HgO electrodes: practical parameters for reporting alkaline water electrolysis overpotentials. ACS Catal. 13, 1893–1898 (2023).


    Google Scholar
     

  • McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).


    Google Scholar
     



  • Source link

    bimetallic Chemistry Efficient electrocatalyst evolution Facile General Materials Science molten MXene nanohybrid Nanotechnology NiFeTi3C2Tx oxygen salt Surfaces and Interfaces Synthesis Thin Films
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
    thanhphuchoang09
    admin
    • Website

    Related Posts

    Chemistry

    Rational design of PMo12-SiW12 coupled catalytic system toward energy-efficient methanol-to-hydrogen conversion

    January 22, 2026
    IELTS

    Latest IELTS test questions in Australia – January 2026 (General Training)

    January 21, 2026
    Chemistry

    A new crystal makes magnetism twist in surprising ways

    January 20, 2026
    Chemistry

    Silicon Solar Cells | ChemTalk

    January 18, 2026
    IELTS

    New IELTS test questions from Italy – January 2026 (General Module)

    January 17, 2026
    Chemistry

    What are rubber ducks made from?

    January 17, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Top Posts

    Announcing the All-New EdTechTeacher Summer Learning Pass!

    May 31, 202555 Views

    Improve your speech with immersive lessons!

    May 28, 202553 Views

    Weekly Student News Quiz: National Guard, Taylor Swift, Comets

    October 13, 202550 Views

    What Helps Nerve Pain in Legs After Back Surgery?

    October 13, 202548 Views
    Don't Miss

    AIFS Abroad Student Spotlight: Molly’s Fall Semester in Prague

    By adminJanuary 22, 20260

    29 Eager to step into the footsteps of a college student who studied abroad in…

    Top 10 Abroad Education Consultants in Hyderabad

    January 19, 2026

    AIFS Abroad Student Spotlight: Valeria’s Summer in Madrid, Spain 

    January 18, 2026

    Best Abroad Education Consultants for UK in Hyderabad

    January 12, 2026
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us
    About Us

    Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

    Our Picks

    February Lesson Plans for Special Education

    January 22, 2026

    Designing the 2026 Classroom: Emerging Learning Trends in an AI-Powered Education System – Faculty Focus

    January 22, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    Copyright© 2025 Bkngpnarnaul All Rights Reserved.
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.