Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Are Adapted Books Good or Bad?

December 12, 2025

Willamette University and Pacific University seek to merge

December 12, 2025

Free AI Use Policy Templates for Teachers

December 12, 2025
Facebook X (Twitter) Instagram
Friday, December 12
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Math»Growth rates of sequences governed by the squarefree properties of its translates
Math

Growth rates of sequences governed by the squarefree properties of its translates

adminBy adminDecember 9, 2025No Comments5 Mins Read2 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Growth rates of sequences governed by the squarefree properties of its translates
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Wouter van Doorn and I have uploaded to the arXiv our paper “Growth rates of sequences governed by the squarefree properties of its translates“. In this paper we answer a number of questions of Erdős} (Problem 1102 and Problem 1103 on the Erdős problem web site) regarding how quickly a sequence {A = \{a_1 < a_2 < \dots\}} of increasing natural numbers can grow if one constrains its translates {n+A} to interact with the set {\mathcal{SF} = \{1,2,3,5,6,7,10,\dots\}} of squarefree numbers in various ways. For instance, Erdős defined a sequence {A} to have “Property {P}” if each of its translates {n+A} only intersected {\mathcal{SF}} in finitely many points. Erdős believed this to be quite a restrictive condition on {A}, writing “Probably a sequence having property P must increase fairly fast, but I have no results in this direction.”. Perhaps surprisingly, we show that while these sequences must be of density zero, they can in fact grow arbitrary slowly in the sense that one can have {a_j \leq j f(j)} for all sufficiently large {j} and any specified function {f(j)} that tends to infinity as {j \rightarrow \infty}. For instance, one can find a sequence that grows like {O(j \log\log\log j)}. The density zero claim can be proven by a version of the Maier matrix method, and also follows from known moment estimates on the gaps between squarefree numbers; the latter claim is proven by a greedy construction in which one slowly imposes more and more congruence conditions on the sequence to ensure that various translates of the sequence stop being squarefree after a certain point.

Erdős also defined a somewhat complementary property {Q}, which asserts that for infinitely many {n}, all the elements {n+a} of {A} for {a \leq n} are square-free. Since the squarefree numbers themselves have density {6/\pi^2}, it is easy to see that a sequence with property {Q} must have (upper) density at most {6/\pi^2} (because it must be “admissible” in the sense of avoiding one residue class modulo {p^2} for each {p}). Erdős observed that any sufficiently rapidly growing (admissible) sequence would obey property {Q} but beyond that, Erdős writes “I have no precise information about the rate of increase a sequence having property Q must have.”. Our results in this direction may also be surprising: we show that there exist sequences with property {Q} with density exactly {6/\pi^2} (or equivalently, {a_j \sim \frac{\pi^2}{6} j}). This requires a recursive sieve construction, in which one starts with an initial scale {n} and finds a much larger number {n'} such that {n'+a} is squarefree for most of the squarefree numbers {a \leq n'} (and all of the squarefree numbers {a \leq n}). We quantify Erdős’s remark by showing that an (admissible) sequence will necessarily obey property {Q} once it grows significantly faster than {\exp( C j \log j)}, but need not obey this property if it only grows like {\exp(O(j^{1/2} \log^{1/2} j))}. This is achieved through further application of sieve methods.

A third property studied by Erdős is the property of having squarefree sums, so that {a_i + a_j} is squarefree for all {i,j}. Erdős writes, “In fact one can find a sequence which grows exponentially. Must such a sequence really increase so fast? I do not expect that there is such a sequence of polynomial growth.” Here our results are relatively weak: we can construct such a sequence that grows like {\exp(O(j \log j))}, but do not know if this is optimal; the best lower bound we can produce on the growth, coming from the large sieve, is {\gg j^{4/3}}. (Somewhat annoyingly, the precise form of the large sieve inequality we needed was not in the literature, so we have an appendix supplying it.) We suspect that further progress on this problem requires advances in inverse sieve theory.

A weaker property than squarefree sums (but stronger than property {Q}), referred to by Erdős as property {\overline{P}}, asserts that there are infinitely many {n} such that all elements of {n+A} (not just the small ones) are square-free. Here, the situation is close to, but not quite the same, as that for property {Q}; we show that sequences with property {\overline{P}} must have upper density strictly less than {6/\pi^2}, but can have density arbitrarily close to this value.

Finally, we looked at a further question of Erdős on the size of an admissible set {A}. Because the squarefree numbers are admissible, the maximum number {A(x)} of elements of an admissible set {A} up to {x} (OEIS A083544) is at least the number {|{\mathcal SF} \cap [x]|} of squarefree elements up to {x} (A013928). It was observed by Ruzsa that the former sequence is greater than the latter for infinitely many {x}. Erdős asked, “Probably this holds for all large x. It would be of some interest to estimate A(x) as accurately as possible.”

We are able to show

\displaystyle  \frac{\sqrt{x}}{\log x} \ll A(x) - \frac{6}{\pi^2} x \ll x^{4/5},

with the upper bound coming from the large sieve and the lower bound from a probabilistic construction. In contrast, a classical result of Walfisz shows that

\displaystyle  |{\mathcal SF} \cap [x]| - \frac{6}{\pi^2} x \ll x^{1/2} \exp(-c \log^{3/5} x / (\log\log x)^{1/5}).

Together, this implies that Erdős’s conjecture holds {A(x) > |{\mathcal SF} \cap [x]|} for all sufficiently large {x}. Numerically, it appears that in fact this conjecture holds for all {n>17}:

Growth rates of sequences governed by the squarefree properties of its translates

However, we do not currently have enough numerical data for the sequence {A(x)} to completely confirm the conjecture in all cases. This could potentially be a crowdsourced project (similar to the Erdős-Guy-Selfridge project reported on in this previous blog post).



Source link

governed Growth Properties Rates sequences squarefree translates
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
thanhphuchoang09
admin
  • Website

Related Posts

Math

Hyperbolic Spin Liquids

December 12, 2025
Math

Top 5 Trickiest Mathematics Questions From Around the World

December 11, 2025
Math

Highest Common Factor |Find the Highest Common Factor (H.C.F)|Examples

December 10, 2025
Math

Wolfram Neural Networks Boot Camp 2026

December 8, 2025
Science

Why Are ADHD Rates On the Rise?

December 7, 2025
Math

Case Study: How New Pasture Lane Primary Builds Maths Engagement with Mathletics

December 7, 2025
Add A Comment
Leave A Reply Cancel Reply

You must be logged in to post a comment.

Top Posts

Announcing the All-New EdTechTeacher Summer Learning Pass!

May 31, 202550 Views

Improve your speech with immersive lessons!

May 28, 202545 Views

Hannah’s Spring Semester in Cannes

May 28, 202539 Views

Weekly Student News Quiz: National Guard, Taylor Swift, Comets

October 13, 202533 Views
Don't Miss

How Do I Find A Study Abroad Program that Matches My Major?

By adminDecember 11, 20250

176 If you’re a college student planning to study abroad, your major is likely one…

Winter Holidays Around the World: Seasonal Celebrations Abroad

December 7, 2025

Introducing AIFS Abroad’s Spring 2026 Green Ambassadors

December 3, 2025

Meet Two People Who Did an Internship Abroad in Lisbon, Portugal

November 29, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

Are Adapted Books Good or Bad?

December 12, 2025

Willamette University and Pacific University seek to merge

December 12, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.