Close Menu
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Norton and Discovery Education Unite to Encourage Responsible AI Engagement for Students

September 20, 2025

Tired of Being Tired? How Better Sleep Fights ADHD Burnout

September 20, 2025

The Bender Bunch: Thanksgiving Crowd Pleasers

September 20, 2025
Facebook X (Twitter) Instagram
Saturday, September 20
Facebook X (Twitter) Instagram Pinterest Vimeo
bkngpnarnaul
  • Home
  • Education
    • Biology
    • Chemistry
    • Math
    • Physics
    • Science
    • Teacher
  • E-Learning
    • Educational Technology
  • Health Education
    • Special Education
  • Higher Education
  • IELTS
  • Language Learning
  • Study Abroad
bkngpnarnaul
Home»Chemistry»Scientists use lightning to make ammonia out of thin air
Chemistry

Scientists use lightning to make ammonia out of thin air

adminBy adminJuly 7, 2025No Comments4 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
Follow Us
Google News Flipboard Threads
Scientists use lightning to make ammonia out of thin air
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Using lightning to make ammonia out of thin air
The electrolyser used as part of the new method to make ‘green ammonia’.Credit. PJ Cullen

University of Sydney researchers have harnessed human-made lightning to develop a more efficient method of generating ammonia—one of the world’s most important chemicals. Ammonia is also the main ingredient of fertilizers that account for almost half of all global food production.

The research was published in Angewandte Chemie International edition.

The team have successfully developed a more straightforward method to produce ammonia (NH3) in gas form. Previous efforts by other laboratories produced ammonia in a solution (ammonium, NH4+), which requires more energy and processes to transform it into the final gas product.

The current method to generate ammonia, the Haber-Bosch process, comes at great climate cost, leaving a huge carbon footprint. It also needs to happen on a large scale and close to sources of cheap natural gas to make it cost-effective.

The chemical process that fed the world, and the Sydney team look to revolutionize it

Naturally occurring ammonia (mostly in the form of bird droppings) was once so high in demand it fueled wars.

The invention of the Haber-Bosch process in the 19th century made human-made ammonia possible and revolutionized modern agriculture and industry. Currently, 90% of global ammonia production relies on the Haber-Bosch process.

“Industry’s appetite for ammonia is only growing. For the past decade, the global scientific community, including our lab, has wanted to uncover a more sustainable way to produce ammonia that doesn’t rely on fossil fuels.

“Currently, generating ammonia requires centralized production and long-distance transportation of the product. We need a low-cost, decentralized and scalable ‘green ammonia,'” said lead researcher Professor PJ Cullen from the University of Sydney’s School of Chemical and Biomolecular Engineering and the Net Zero Institute.

His team has been working on “green ammonia” production for six years.

“In this research we’ve successfully developed a method that allows air to be converted to ammonia in its gaseous form using electricity. A huge step towards our goals.”

The plasma column used to kickstart the process for ‘green ammonia’ Credit: PJ Cullen/ Plasmaleap

Ammonia contains three hydrogen molecules, meaning it can be used as an effective carrier and source of hydrogen as an energy source, even potentially as an effective means of storing and transporting hydrogen. Industry bodies have found they can access the hydrogen by “cracking” ammonia to separate the molecules to use the hydrogen.

Ammonia is also a strong candidate for use as a carbon-free fuel due to its chemical make-up. This has caught the interest of the shipping industry, which is responsible for about 3% of all global greenhouse gas emissions.

Cracking a chemical conundrum

Professor Cullen’s team’s new method to generate ammonia works by harnessing the power of plasma, by electrifying or exciting the air.

But the star is a membrane-based electrolyzer, a seemingly non-descript silver box, where the conversion to gaseous ammonia happens.

During the Haber-Bosch process, ammonia (NH3) is made by combining nitrogen (N2) and hydrogen (H2) gases under high temperatures and pressure in the presence of a catalyst (a substance that speeds up a chemical reaction).

The plasma-based method Professor Cullen’s team developed uses electricity to excite nitrogen and oxygen molecules in the air. The team then passes these excited molecules to the membrane-based electrolyzer to convert the excited molecules to ammonia.

The researchers said this is a more straightforward pathway for ammonia production.

Professor Cullen said the findings signal a new phase in making green ammonia possible. The team is now working on making the method more energy efficient and competitive compared to the Haber-Bosch process.

“This new approach is a two-step process, namely combining plasma and electrolysis. We have already made the plasma component viable in terms of energy efficiency and scalability.

“To create a more complete solution to a sustainable ammonia productive, we need to push the energy efficiency of the electrolyzer component,” Professor Cullen said.

More information:
Wanping Xu et al, Regulating Multifunctional Oxygen Vacancies for Plasma‐Driven Air‐to‐Ammonia Conversion, Angewandte Chemie International Edition (2025). DOI: 10.1002/anie.202508240

Provided by
University of Sydney

Citation:
Scientists use lightning to make ammonia out of thin air (2025, July 4)
retrieved 7 July 2025
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

air ammonia lightning Materials Nanotech Physics Physics News Science Science news Scientists Technology Technology News thin
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email WhatsApp Copy Link
yhhifa9
admin
  • Website

Related Posts

Chemistry

More on rescuing articles from a now defunct early pioneering example of an Internet journal.

September 20, 2025
Chemistry

Harvard’s salt trick could turn billions of tons of hair into eco-friendly materials

September 18, 2025
Chemistry

Tumour-specific STING agonist synthesis via a two-component prodrug system

September 17, 2025
Physics

Relive the two decades when physicists basked in the afterglow of the Standard Model – Physics World

September 17, 2025
Chemistry

Porous radical organic framework improves lithium-sulfur batteries

September 16, 2025
Chemistry

Metal-Catalyzed Cross-Coupling Reactions | ChemTalk

September 13, 2025
Add A Comment
Leave A Reply Cancel Reply

Top Posts

2024 in math puzzles. – Math with Bad Drawings

July 22, 202520 Views

Testing Quantum Theory in Curved Spacetime

July 22, 20259 Views

How AI Is Helping Customer Support Teams Avoid Burnout

May 28, 20259 Views

Chemistry in the sunshine – in C&EN

August 9, 20256 Views
Don't Miss

Meet Four College Students Who Studied Abroad in England

By adminSeptember 19, 20252

64 England is overflowing with cultural experiences and valuable academic opportunities across a wide range…

Literary Gardens – Global Studies Blog

September 16, 2025

Nicole’s Spring in Valencia, Spain 

September 13, 2025

Finding Housing in Dublin | Study in Ireland

September 12, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
About Us
About Us

Welcome to Bkngpnarnaul. At Bkngpnarnaul, we are committed to shaping the future of technical education in Haryana. As a premier government institution, our mission is to empower students with the knowledge, skills, and practical experience needed to thrive in today’s competitive and ever-evolving technological landscape.

Our Picks

Norton and Discovery Education Unite to Encourage Responsible AI Engagement for Students

September 20, 2025

Tired of Being Tired? How Better Sleep Fights ADHD Burnout

September 20, 2025

Subscribe to Updates

Please enable JavaScript in your browser to complete this form.
Loading
Copyright© 2025 Bkngpnarnaul All Rights Reserved.
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.